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ABSTRACT 

This report describes the theory and implementation of a model of alternative fuel and vehicle choice 
(AFVC), designed for use with the U.S. Department of Energy's Alternative Fuels Trade Model 
(AFTM). The AFTM is a static equilibrium model of the world supply and demand for liquid fuels, 
encompassing resource production, conversion processes, transportation, and consumption. The 
AFTM also includes fuel-switching behavior by incorporating multinomial logit-type equations for 
choice of alternative fuel vehicles and alternative fuels. This allows the model to solve for market 
shares of vehicles and fuels, as well as for fuel prices and quantities. The AFVC model includes 
fuel-flexible, bi-fuel, and dedicated fuel vehicles. For multi-fuel vehicles, the choice of fuel is 
subsumed within the vehicle choice framework, resulting in a nested multinomial logit design. The 
nesting is shown to be required by the different price elasticities of fuel and vehicle choice. A 
unique feature of the AFVC is that its parameters are derived directly from the characteristics of 
alternative fuels and vehicle technologies, together with a few key assumptions about consumer 
behavior. This not only establishes a direct link between assumptions and model predictions, but 
facilitates sensitivity testing, as well. The implementation of the AFVC model as a spreadsheet is 
also described. 
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ALTERNATIVE FUELS AND VEHICLES CHOICE MODEL 

1. CONTEXT 

Development of the Alternative Fuels and Vehicles Choice Model (AFVC) is part of an ongoing 
study of the Costs and Benefits of Alternative Fuel Use in the U.S. Transportation Sector (U.S. DOE, 
1988). Information and analytical tools developed in the course of that study are being applied to 
answer questions posed by Section 502(b) of the Energy Policy Act of 1992 (EPACT) concerning 
the technical and economic feasibility for alternative fuels to replace petroleum fuels, reduce 
greenhouse gas emissions, and displace U. S. energy imports. The act sets goals of 10% replacement 
by 2000 and 30% by 2010. The key analytical tool for this assessment is the Alternative Fuels Trade 
Model (AFTM), a computer model of world supply and demand for liquid fuels (Manne, 1989; 
Leiby, 1993). The Alternative Fuels Trade Model (AFTM) represents world supply and demand for 
liquid fuels by means of an optimization model comprising 1) resource supply, 2) conversion into 
liquid fuel products, 3) transportation and distribution, and 4) demand for fuels (Leiby, 1993). A 
unique feature of the AFTM is the inclusion of the choices of alternative fuel vehicles and 
alternative fuels in solving for a world energy market equilibrium. It accomplishes this by 
incorporating a multinomial logit (h4NL) model into the AFTM's objective function (Leiby and 
Greene, 1993). This memorandum sets forth the methodology of the AFVC model and explains how 
the parameters of the model are developed and converted into an appropriate format for use in the 
AFTM. 

The philosophy underlying the AFVC model is to maintain a direct and explicit linkage between 
assumptions about fuels, vehicles, and consumer behavior, and the resulting model coefficients. The 
model's parameters do not emerge from a "black box," but are instead derived from assumptions 
about vehicles and consumer behavior that must be stated explicitly. In order to forecast the demand 
for new commodities such as alternative fuels and vehicles, a number of important assumptions must 
be made about, 1) what attributes influence the choices of fuels and vehicles, 2) how consumers will 
value the differences among fuels and vehicles, and 3) how sensitive choices will be to fuel prices. 
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Fuel prices are the only variables in the AFTM affecting fuel and vehicle choices. ' Calibration of 
the AFVC model begins by stipulating the characteristics of vehicles and fuels that are expected to 
be important in consumers' decision-making. Next, each important attribute of the vehicles and fuels 
is quantified. Typical (average) values ($/unit) for each characteristic are then used to obtain a value 
in dollars for each attribute. These values can be directly translated into coefficients of the MNL 
choice model, once the price elasticities of fuel and vehicle choices are specified. 

The steps required to calibrate the AFVC model are illustrated in Figure 1.1. Boxes indicate where 
critical assumptions are introduced. The calibration method relies on existing studies of consumer 
choices of conventional and alternative fuels, analyses of surveys of consumer preferences for 
alternative fuels, existing technology assessments for alternative fuel vehicles, and assumptions 
about key factors such as the discount rate and value of time. By deriving parameters from specific 
assumptions about consumer behavior and vehicle attributes, the method requires a clear statement 
of the suppositions on which the model's predictions are based. Uncertainty about many important 
aspects of the future markets for alternative fuels and vehicles makes it important both to be clear 
about what assumptions have been made, and to be able to change assumptions and repeat the 
analysis. The AFVC methodology maintains a clear record of assumptions so that their effects on 
predicted outcomes can be understood. 

Modeling demand for novel products for which there is no history of market experience is always 
tricky. Existing studies of consumer demand for alternative fuels offer a reasonable consensus about 
which fuel characteristics are important, but permit only a limited quantification of consumers' 
willingness to pay for fuel attributes. In addition, some key characteristics of future alternative fuel 
vehicles are only approximately known at this time. For some alternative fuels, positive and 
negative characteristics of the fuel may offset each other to a substantial degree, leaving market 
share to be determined by price and intangible or unpredictable factors such as consumer perceptions 
of fuel "quality," or individual willingness to pay for fuels with social rather than private benefits. 
The price responsiveness of fuel and vehicle demand in the context of a well-developed alternative 
fuels market is also not definitively known. Existing econometric studies of conventional fuel type 
choice, indicate very high price elasticities (-10 to -40) of demand in a variety of contexts. The price 
elasticity of vehicle type choice is also likely to be quite high for most vehicle types. To the extent 
that alternative fuels are perceived to be nearly equivalent to gasoline, vehicle and fuel choice is 
likely to be highly sensitive to very small price or quality differences. 

'Because the value of at least one attribute is a function of fuel prices, the method does not allow a fully 
simultaneous determination of fuel prices and fuel and vehicle choices. This shortcoming can be overcome 
by iteratively solving the AFTM and recomputing parameter values. 
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FIGURE 1.1 ALTERNATIVE FUELS AND VEHICLES CHOICE MODEL 
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What is required is a modeling method that recognizes the existence of uncertainties, permits what 
is known to be used in a rigorous manner, and requires all critical assumptions to be made explicitly. 
The AFVC model accomplishes these goals by starting with a theoretically rigorous model structure, 
and calculating all of its parameters from data or explicitly stated assumptions. The AFTM 
incorporates the AFVC model into its objective function in order to predict the market shares that 
maximize social welfare (Leiby and Greene, 1993). 

The process of calibration begins with the specification of key assumptions about consumer behavior 
and fuel and vehicle attributes (Figure 1.1). These are entered in a spreadsheet which uses them to 
calculate fuel attribute values in 1990 dollars per barrel of gasoline equivalent. Dollar values of fuel 
attributes are first used to estimate coefficients for the fuel choice decisions for multi-fuel vehicles, 
which are then subsumed, or nested, in the vehicle choice model. 

Based on assumptions about vehicle use, depreciation rates, fuel economy, length of ownership, and 
discount rates, also entered in the spreadsheet, price differences among vehicles are converted to 
price differences per barrel of gasoline equivalent. Price slope coefficients are then calculated from 
three items of data supplied by the user: 1) a price elasticity at 2) a given market share and 3) initial 
vehicle price'. The price slope is then used to transform the dollar values of attributes into 
alternative-specific constants for the logit model. As a result, the coefficients of the h4NL choice 
model in the AFTM depend directly and entirely on the assumptions made about vehicle 
characteristics and related factors. 

Because the AFTM is a static equilibrium model, solutions represent long-run adjustments of supply 
and demand to prices. The AFTM does not attempt to represent the dynamic process of new vehicle 
purchases and the aging and retirement of vehicle stock. Similarly, the expansion of alternative fuel 
vehicle manufacturing capability and alternative fuel processing and distribution networks are not 
represented. The stock of A F V s ,  and the choice of fuel by Flexible Fuel Vehicles (FFVs) and Dual- 
or Bi-Fuel Vehicles (DFVs) are determined at the same time and are, by assumption, in long-run 
accord with fuel prices. It is therefore desirable that the choice of vehicle reflect the consumer's 
evaluation of the fuels the A F V s  can use and that this evaluation be consistent with the modeling 
of fuel choices. This is accomplished by an explicit linking of the fuel and vehicle choice logit 
models. Fuel attribute values from the fuel choice logit model enter into the vehicle choice model 
in a way that reflects their expected value to the vehicle purchaser. This linkage between the fuel 

%ce slope here refers to the coefficient of price in the consumer's indirect utility function as distinguished 
from the derivative of market share with respect to fuel price. 
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and vehicle type choice models insures consistent parameter values for the two models. It does not, 
of course, remove the inherent limitations of static equilibrium models. The AFTM assumes that 
there has been sufficient time for products to be developed, sold, and penetrate the fleet, 
manufacturing and fuel supply capacity to be expanded, and that prices have been stable for long 
enough to allow the market to reach a stable equilibrium. Clearly, world energy markets are 
anything but static and so model solutions are probably best interpreted as directions in which 
markets are likely to move, and even then must be interpreted cautiously. 

Assuming a long-run market equilibrium has one enormously important implication for the AFVC 
model. The model treats all alternative fuels and vehicle technologies equally. More specifically, 
it assumes that every AF is widely available (like gasoline) and that every AFV technology is 
available for every make and model of vehicle consumers may desire. This assumption is unrealistic 
for dynamically evolving real world markets. Even in a long-run equilibrium market, it is likely that 
economies of scale would limit the availability of the less popular AFV technologies and AFs. Thus, 
the AFVC methodology may also overstate the market shares of less popular fuel and vehicle types. 
Modeling the crucially important dynamics of alternative fuels markets is a subject for future 
research. 
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2. SPECIFICATION OF A VEElICLE AND FUEL CHOICE MODEL 

Alternative fuels and alternative fuel vehicles are unfamiliar commodities to the vast majority of 
consumers. Despite three decades of efforts, predicting demand for novel commodities remains on 
the frontier of economic analysis. Predicting the demand for alternatives to conventional vehicles 
is inherently tricky because direct historical experience from which to draw inferences about future 
behavior is lacking. Researchers have developed two approaches for coping with inadequate 
historical data on consumer demand for new commodities, such as alternative fuels and vehicles. 
One approach is to develop synthetic data, by means of surveys which pose hypothetical questions 
about purchases of vehicles and fuels to potential consumers (e.g., Golob, et al. 1992). Such surveys 
produce information about consumers' "stated preferences" which may or may not match the 
"revealed preferences" they express by their actual purchase decisions. The alternative is to draw 
inferences, based on revealed preferences expressed in analogous but different situations, about how 
consumers value the attributes of similar goods. Analogous situations might include, for example, 
choices among different grades, brands, and service levels for gasoline, choice of gasoline or diesel 
engines for automobiles and light trucks, and choices among different types of automobiles. Both 
methods have important shortcomings and, indeed, there is no generally accepted method for 
predicting the demand for new commoditie~.~ While each has advantages and disadvantages, the 
latter approach was chosen here for the reasons given below. 

A real danger in stated preference surveys is that respondents will provide biased answers not 
representative of their actual behavior. Respondents have a tendency to tell an interviewer what they 
think he wants to hear, or what they believe is the socially correct response. Alternative fuel 
vehicles are often perceived to be environmentally "clean" vehicles that would help relieve the 
country of its dependence on imported petroleum. Both of these are public rather than private 
benefits, creating exactly the kinds of conditions that tend to produce biased responses in stated 
preference surveys. Furthermore, when a survey deals with novel commodities respondents often 
have great difficulty evaluating technologies with which they have no first-hand experience. They 

'The numbers of relevant attributes, correlations among them, as well as difficulties in defining and 
measuring attributes often make it difficult to infer reliable amibute values from past choices. Inferences from 
surveys based on hypothetical choices are usually ambiguous due to likely differences between what 
respondents say they will do (stated preferences) as opposed to what they actually will do (revealed 
preferences). 
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may not fully appreciate the implications of certain vehicle or fuel characteristics, and they may also 
introduce assumptions and biases not presented to them in the survey. Once choice models have 
been estimated using the survey data, there is no way to sort out these potential biases. 

Analogizing from actual behavior in similar situations also has deficiencies. Situations are never 
exactly analogous and it is not possible to control for all the dissimilar factors. In addition, existing 
studies do not cover all of the differences between alternative and conventional fuel vehicles. A 
good example of this might be the recharging of battery-powered electric vehicles. The gaps must 
be filled in by assumption. Rather than being a disadvantage, we view this as an advantage, since 
the assumptions on which the analysis is based are explicit, rather than hidden. It is a useful 
property for the purposes of policy analysis to have conclusions that can be directly related to 
assumptions. It also facilitates testing the sensitivity of results to the assumptions that have been 
made. 

2.1 HEDONIC DEMAND AND RANDOM UTILITY 

Predicting demand for new commodities is one of the most difficult problems in economics. 
Without the benefit of historical data from which to infer patterns of consumer behavior, it is 
difficult to formulate a credible quantitative model of demand. The theory of hedonic demand was 
developed to address this situation indirectly, by postulating that consumers' utility depends on the 
attributes of goods rather than the good, per se (e.g., Lancaster, 1966). Thus, if the value of 
attributes could be determined, demand for novel goods might be inferred from the values of their 
attributes. When predicting consumers' choice among a set of discrete options, the hedonic demarld 
premise led to the development of random utility theory. Random utility theory extends the hedonic 
demand concept by postulating that in addition to the value attached to observed attributes, there is 
a portion of the utility of a good that can be considered random (McFadden, 1974). Let U, stand 
for a quantitative measure of the utility, or satisfaction, consumer n derives from good i, and V(x,) 
represent the function that assigns a quantitative value to the observable attributes (q) of good i, and 
let E,, be the random component for good i and consumer n. 
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An important implication of equation (2.1) is that no alternative has a strictly higher utility than any 
other. Rather it has a greater expected utility, V(xJ, or a greater probability of having a higher 
utility. 

The random utility component represents a multitude of factors left out of the measured utility 
function V. Econometricians have explained its role as follows: 

"We start with the assumption that consumers are rational in the sense that they 
make choices that maximize their perceived utility subject to constraints on 
expenditures. However, there are many errors in this maximization, because of 
imperfect perception and optimization, as well as the inability of the analyst to 
measure exactly all of the relevant variables." (Maddala, 1992, p. 59) 

Maddala has further described the random component as a factor, 

"...that captures unobserved variations in tastes and in the attributes of altern tiv S 

and errors in the perception and optimization by the consumer." (Maddala, 1992, 
P. 60) 

If consumers make errors in perception and optimization, it implies that even they may not know 
at the time they make their choices how satisfied they will be with them. Thus, the buyer of a new 
car is not entirely certain at the time of purchase how satisfied he will be with it: a very plausible 
assumption. 

In the multinomial logit model, there is a direct relationship between the sensitivity of choices to 
price and the relative importance of the random component in the choice decision. The proof of this 
can be found in Appendix A. It also squares with intuition. The more certain we are of the value 
of our options, the more the decision will turn on price. Put another way, the more similar the 
choices are, given the factors accounted for in the function V, the more price sensitive the choice 
will be. In economic terms, this is another way of saying the choices are close substitutes 
(conditional on V). The practical result of this special relationship for the MNL model is that when 
price elasticities are specified so also are the random error components. 

The essence of the AFVC approach is the following. First, we specify an explicit and rigorous 
model of the alternative fuel vehicle choice process. Next we enumerate the factors to be considered 
in the choice process. Fuels and vehicles are then described by specific values for each factor. 
Drawing on the existing literature on vehicle and fuel choice and travel behavior, values are 
developed for each relevant factor, including prices. Parameters of the vehicle choice model are 
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then computed directly from these data and assumptions. The result is a choice model whose 
parameters can be directly traced to vehicle and fuel characteristics, and assumptions about 
consumers' valuation of them. 

2.2 THEORY AND MATHEMATICAL FORM OF THE AFVC MODEL 

It seems natural to consider the alternative fuel choice decision as composed of two, sequential 
steps: 1 )  choice of vehicle, and 2) choice of fuel for that vehicle. In real life, this is the temporal 
order in which the decisions would be made. In the context of a long-run static equilibrium model 
such as the AFTM model, however, the choices are made simultaneously. In other words, market 
shares are determined simultaneously for the elementary choices consisting of a vehicle and fuel 
combination (e.g., "FFV using Gasoline," "NGBiF using CNG," etc.; see Figure 2.1). The temporal 
sequencing is not relevant. However, for reasons other than the timing of decision-making, it will 
prove useful and appropriate to structure the fuels and vehicles choice model in a way that 
distinguishes between vehicle and fuel choices. 

It also seems obvious that the fuels a vehicle can use and their characteristics should influence the 
choice among vehicle types. The model structure proposed here explicitly embeds, or nests, the fuel 
choice decision for a multi-fuel vehicle within the vehicle choice decision. Factors affecting fuel 
choice thus directly influence vehicle choice, and the parameters of the vehicle choice model are 
composed in part of the parameters of the fuel choice model. In this section, the structure of the 
choice model is described, the multinomial logit model and the concept of generalized cost used here 
to compute coefficients for the model are then introduced, and it is shown how the choice structure 
gives rise to a generalization of the MNL model termed the nested MNL (NMNL) model. 

There is an extensive literature on the subject of models of "qualitative responses" (McFadden, 
1974; Amemiya, 1985; Maddala, 1992) in which individuals choose one option from a set of discrete 
alternatives. These models have been widely used in transportation to represent choices among 
destinations for trips and modes of transport (e.g., Ben-Akiva and Lerman, 1987) and to represent 
consumers' decision-making in choosing an automobile (e.g., Train, 1986). The most widely used 
type of qualitative choice model is the multinomial logit model (MNL) which combines relative 
mathematical simplicity, enormous flexibility, and ease of estimation with a rigorous derivation 
based on economic theory. Most often, the MNL model is used to represent the choices of 
individual (or disaggregate) decision-making units such as households or persons. Its use in 
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representing macroeconomic behavior has traditionally been thought to give rise to problems of 
aggregation bias unless appropriate simulation methods are used (e.g., Train, 1986, Ch. 6). 
However, the model can also be interpreted as representing the average behavior of a group of 
consumers. Recently, Anderson, De Palma, and Thisse (1988) have shown how a macroeconomic 
version of the MNL model can be derived based on a "representative consumer*' or a population with 
diverse tastes. 

The multinomial logit model is construed in this report to be a representation of the general or 
typical behavior of a population, allowing a random error term to represent general deficiencies in 

the model, including variations across individuals. We assume that the goodness or utility of an 
alternative can be represented by a function, 

in which the X,'s are observable variables describing option i, V is a linear utility function, and the 
ci represents, in Madalla's (1992, p. 60) words, 

"...a residual that captures unobserved variations in tastes and in the attributes of 
alternatives and errors in the perception and optimization by the consumer." 

If the error terms are independently and identically distributed and follow a type I extreme value 
distribution with probability density 

then it can be shown (e.g., see Maddala, 1992, pp. 60-61) that the probability of option i being 
chosen by any given consumer is given by the multinomial logit function of its utility, V(XJ = 

PCtXi)." 

'The proof is given in Appendix A. Throughout this exposition, we use probability and market share 
interchangeably, represented by the letter s. 
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e f5S 
s, = - 

j =  1 
f f5c, (2.4) 

We have chosen to represent utility as a constant, p, times a "generalized cost" function Ci = C(Xi), 
in order to show the relationship between the price sensitivity of choice probabilities, or market 
shares, and the parameter of the extreme value distribution function. The linear utility function can 
be written as a sum of other variables times their coefficients (ais) plus pci, where ci is the cost or 
price of the i* option. 

K K 

k= 1 k=l p 
= pci + C U J *  = p (Ci + C%X*) = pci 

Thus, p is both the price slope of the utility function and the scale parameter of the random error 
term. This has the following useful interpretation. The more price sensitive the choice among 
options is, the smaller the variance of the random utility component, i.e. the more completely the 
observed variables reflect the important factors in consumers' decision-making. This is an 
intuitively satisfying property. If, excepting the observed variables, the choices are extremely 
similar, they should be very close substitutes and therefore choices among them should be very price 
elastic. This property will be helpful when it comes time to specify parameters for the MNL model, 
and we will also use it to explain why a nested logit structure may be the most appropriate structure 
to represent vehicle and fuel choice. 

The price elasticity of choice in the MNL model depends on p, ci, and si, the market share. 

Equation (2.6) implies that elasticities will be very high at low market shares and decrease as shares 
approach market dominance. Equation (2.6) also provides a means of estimating the cost parameter 
p if the elasticity at a particular market share and price is known. 

It seems reasonable to assert that the choice among fuels for a given type of alternative fuel vehicle 
will be more price sensitive than the choice of vehicle type. Interpreting this in terms of the 
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parameter p, one would say that the variation in unobserved attributes is less for choice of fuel than 
for choice of vehicle. This seems a very plausible assertion since the fuels are to be used in the same 
vehicle, making all vehicle-specific attributes constant. There is ample evidence, for instance, that 
price elasticities of choice of car type are in the range of -1 to -5, while the elasticities of choice of 
type of gasoline have been estimated to be -20 or higher at typical market shares. Whenever p 
parameters differ for definable subsets of the full choice set, a special type of multinomial logit 
model, called the nested multinomial logit model (NMNL) provides a more accurate representation 
of the decision process. Suppose we divide the elementary choice set (all vehicle fuel combinations) 
into subsets, such that a subset contains the elementary choices corresponding to a particular type 
of alternative fuel vehicle. For example, flexible fuel vehicle (FFV) using gasoline, FFV using M85, 
and FFV using E85 would be in one subset', while bi-fuel natural gas vehicle (BiNGV) using 
compressed natural gas and BiNGV using gasoline would be in another. This choice structure is 
illustrated in Figure 1.1. The probability of choice of fuel type j used in vehicle type i, s,, can 
always be expressed as the product of the (conditional) probability of choice of fuel type j given 
vehicle type i has been chosen, times the (marginal) probability of choice of vehicle type i. 

s.. = s . .  - Si 
rl I / '  

We assume the choice of fuel within a subset is multinomial logit, with generalized cost cij and price 
slope pi (price sensitivity is constant within a subset but may vary across subsets). The conditional 
probability of choice of fuel type j, given vehicle type i, is then, 

The probability of choice of vehicle type i depends on its generalized cost, ci and the cost slope for 
vehicle type choice, which we will represent by p. Recall that p is also the scale parameter of the 
distribution of random influences (unobserved factors, differences in tastes, imperfect information, 
etc.) for the vehicle type choice decision. The generalized cost for vehicle type i is composed of 
factors that do not vary over fuel types, and of the average generalized cost of the fuels that vehicle 
type i can use. If it were not for the random error term, the average generalized cost would be the 

5M85 is a blend of 15% gasoline and 85% methanol. E85 is similarly a 15%/85% blend of gasoline and 
ethanol. 
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weighted average of the generalized costs, cij, of the fuel options in subset i, the weights being the 
fuels' market shares. But if it were not for the random error term, only the fuet with the lowest 
generalized cost would be chosen by utility maximizing consumers, and so the average generalized 
cost would be that of the lowest cost fuel. Since we assume there are random components to the 
generalized cost, the average cost is given by (Williams, 1977), 

(2.9) 

where the k can be omitted since it has no effect on the choice probabilities (Fisk and Boyce, 1984). 
The generalized cost of vehicle type i is the sum of the vehicle specific costs (which we will 
designate ui) and the average cost of the choice of fuel type! The probability of choice of vehicle 
type i is then, 

(2.10) 

where M is the number of vehicle types. The coefficient of the logsum term is the ratio p/pi, the 
price coefficient of the vehicle choice decision divided by the price coefficient of the fuel choice 
decision (the prices must be in the same units). This ratio will always lie between zero and one if 
the nesting has been properly structured. If the ratio equals one, then there is no nesting structure, 
as shown below. This property of the NMNL logit model has an interesting economic interpretation, 
namely that choices within a nested subset must be closer substitutes (their market shares must be 
more sensitive to price) than choices at the higher level. Put another way, the random factor in the 
choice decision must be smaller within a nest than at a higher level in the choice structure. In the 
alternative fuels and vehicles choice model, this implies that for the vehicle choice decision, the 
unobserved error component must be larger (the price elasticity must be smaller) than for the fuel 
choice decision. 

The product of equations (2.8) and (2.10) comprises a nested multinomial logit model for the joint 
probability of vehicle and fuel type choice (sij). If we assume that pi = p for all i, then the nested 

61t is imperative that these costs be expressed in the same units. If vehicle costs are in terms of initial capital 
costs, fuel costs must be expressed in terms of costs capitalized over the vehicle's lifetime to present value. 
Likewise, if fuel costs are to be expressed in dollars per unit (e.g., per barrel) then vehicle costs must be 
expressed in dollars per unit of fuel consumption. 
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model collapses to a simple multinomial logit model. By substituting equation (2.9) in equation 
(2,10), substituting p for pi, and multiplying equations (2.8) and (2.10) together (since sij = sjii- si), 
and simplifying one obtains the following, 

(2.11) 

Equation (2.1 1) is a simple multinomial logit model. The fact that generalized cost has been 
separated into vehicle-specific and fuel-specific components is a result of the choice of notation. 
Thus, it is the differences in price sensitivity ( p+pi), or equivalently the differences in the relative 
importance of the error component, that creates the nested structure. Since research on vehicle and 
fuel choice, as well as intuition, strongly suggest that the elasticity of fuel choice for a multi-fuel 
vehicle will be more price sensitive than the choice of vehicle, the NMNL structure is preferred over 
the simple multinomial logit model. 

23 FACTORS IN THE FUEL CHOICE DECISION 

The first step in constructing the AFVC model is to identify the characteristics consumers will 
consider in choosing vehicles and fuels. In this section we describe factors that are believed likely 
to influence consumers' choice of alternative fuels and vehicles. The discussion draws heavily from 
the extant literature. In Chapter 3, we explain how factors are quantified and translated in NMNL 
model parameters. 

Some factors that are important today should not be included in AFVC model because they pertain 
to the transition to alternative fuels and would disappear in a mature market. As long as there are 
few AFVs on the road, the low level of AF demand will not support an extensive network of 
refueling stations. The difficulty in finding an alternative fuel or the extra distance that must be 
traveled to obtain it will discourage demand for alternative fuels. In the early stages of fuel and 
vehicle introduction, there may also be unforeseen reliability or performance problems that can have 
a drastic effect on consumers' acceptance of alternative fuel vehicles and alternative fuels. 
Experience in the U.S. with diesel automobiles illustrates the importance of "start-up" problems with 
vehicle technology (Kurani and Sperling, 1988). But the U.S. diesel car experience also illustrates 
that such problems can be overcome, and shows the ultimate importance of a fuel cost advantage 
to the market success of alternative fuels (Greene, 1986). Because the AFTM is a long-run static 
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equilibrium model, we assume that all of these "start up" problems have been solved. We also 
assume that fuel is readily available to those who wish to buy it. Ignoring fuel availability costs. 
however, will cause us to overstate the market shares of fuels with a small share of the market. 

Surveys of motorists have determined that at least the factors listed in Table 2.1 are important to the 
decision to choose an alternative fuel (e.g., Golob, et a]., 1992). Some characteristics are associated 
with vehicle technologies and do not depend on which fuel is being used. Others are fuel-specific 
and occur only when the fuel is used. Thus, a multi-fuel vehicle will have different characteristics 
depending on'which fuel is being used. 

The factors included in the AFTM AFV Choice Model are highlighted in boldface (Table 2.1). The 
remaining factors and the manner in which they are treated in the AFV Choice Model are discussed 
below. 

Fuel Availability is consistently rated a major concern by prospective alternative fuel buyers Golob, 
et al., 1992; Kurani, 1992). In practice, however, fuel availability rarely turns out to be a problem 
for those actually using alternative fuel vehicles, even if only 10%-20% of the stations offer the fuel 
(Sperling and Kurani, 1987; Kurani, 1993; Greene, 1989). Since it is likely that perhaps 10% of the 
stations would offer an alternative fuel which comprised only 1-2% of total gallonage, is likely to 
be a problem during only the early stages of fuel introduction, or only if fuel sales are very small. 
In either case, when using a long-run equilibrium model it seems reasonable to assume that fuel 
availability is not a problem, but use caution in interpreting the model's predictions.' For a fuel with 
a large equilibrium market share (say >lo%), fuel availability is a transitory problem, and therefore 
not appropriate for a market equilibrium model. For fuels with a very small market share (say e%), 
fuel availability is likely to be a sufficiently serious problem to relegate the fuel to niche markets. 
Thus, fuel availability is likely to be a crucial factor only for fuels with predicted shares in single 
digits. 

Refueling difficulty may be of two kinds: 1) increased time required for refueling, and 2) increased 
difficulty or complexity of the refueling task. Since alcohol fuels are liquids and will be handled 

'An alternative option would be to incorporate a simultaneous relationship into the AFTM so that the cost 
of fuel availability would be high if fuel sales were very small but decreased rapidly at markets shares over 2%, 
or so. Our approach is to assume that fuel availability is not a problem, but to be aware that if the AFTM 
model predicts market shares of less than 2% for alternative fuels, the true market share is probably much 
lower. 
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Table 2.1 Fuel and Vehicle Choices 

Fuel Characteristics 

1 .  cost 

2. Fuel Availability 

3 .  Refueling Difficulty 
Range (Frequency) 
Refueling time and convenience 

4. Fuel Quality 
Performance (acceleration or power) 
Effect on Vehicle Reliability and Maintenance 
Health and Safety 
Aesthetics 

5. Social Benefits 
Emissions 
Oil Dependence 

Vehicle Characteristics 

1. cost 

2. Reliability and Maintenance 

3. Performance (acceleration or power) 

4. Health and Safety 

5.  Capacity (to carry people and cargo) 

6. Value of Multi-Fuel Option 

7. Combined Effects of Fuel Characteristics 

exactly like gasoline, complexity of the refueling task will be the same for ethanol and methanol as 
for conventional gasoline. LPG is also handled as a liquid under modest pressure and as such has 
about 213 the energy density as gasoline, so that refueling should be only slightly more complex than 
for gasoline or alcohol. CNG refueling, however, must be done at pressures of approximately 3,000 
psi. Even "fast-fill" CNG refueling is likely to take a few minutes longer than refueling with liquid 
fuels. Battery electrics are a special case. Although "fast recharge" technologies exist and may be 
improved in the future, we assume that slow charge over a period of six hours will be the norm. But 
battery recharging will not fully occupy the motorist's time the way refueling does. Thus, although 
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the time required is much longer, it should not be valued at the same rate since it does not require 
the motorist's full attention. 

Range, or refueling frequency, is a function of the energy density of the alternative fuel relative to 
gasoline, the capacity of the storage device, and the relative efficiency of the vehicle when using the 
alternative fuel. Alternative fuels vary considerably in their energy densities per unit volume (Table 
2.2). Though available evidence is not conclusive, it appears that fuel-flexible and bi-fuel vehicles 
achieve roughly equal fuel economy on a gallon of gasoline equivalent energy basis (McNutt, 1993). 
Alcohol flexible vehicles not designed to use gasoline may achieve up to 10% better MPG 
(Interagency Commission on Alternative Motor Fuels, 1991, p. 22). The far greater energy 
efficiency of electric drives, helps to mitigate the very low energy density of even advanced 
batteries. 

Table 2.2 Relative Energy Content and Refueling Frequency of Gasoline and Alcohol Fuels 

Fuel Energy Content 
(Btdgallon) 

Unleaded Gasoline 
Methanol 
Ethanol 
M85 
E85 
CNG (3,000 psi) 
LPG 
Battery Electric 

1 15400 
56560 
75670 
65386 
81630 
24700 
83570 
2000t 

?Assumes a sodiudsulfur battery with a volumetric energy density of 0.15 kWliter. 

Given a fuel tank of equal size, the lower energy densities of M85 and ES5, for example, imply that 
FFVs when using them will require refueling about 75% or 40% more often, respectively. This is 
disadvantageous because it demands more of the consumer's time. If we assume a total of 6 minutes 
time used for each refueling, value time at $1 0 per h o d ,  and assume that an average of 213 of a tank 
is purchased per refueling, we arrive at an average refueling cost of $0.10 per gallon of gasoline.' 

*Ten dollars per hour (1 990%) is a reasonable estimate of the average value travelers attach to their time 
(Chui and MacFarland, 1986). We are not aware of specific estimates of the value of time spent refueling 
conventional vehicles. 

%e assumption of 6 minutes is intended to represent the in-station refueling time, not including travel time 
to and from the station. 
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By this same reasoning, the extra refueling required for M85 and E85 add an additional $0.07 and 
$0.04 to the cost per gasoline equivalent gallon of these fuels. These assumptions appear reasonable 
to us, and are comparable to (though slightly lower than) what can be inferred from the responses 
to a recent survey about alternative fuel vehicles conducted for the California Energy Commission 
(Golob et ai., 1992). Battery electric vehicles are so different from liquid or gaseous fueled vehicles 
that it is difficult to compare them on a consistent basis. Even an EV with an advanced battery (a 
battery not available today) would require almost 60 gallons of volume to store the equivalent of one 
gallon of gasoline. Despite the fact that an EV is likely to be more than twice as efficient as a 
conventional vehicle, 60 gallons of batteries would permit an effective range of less than 100 miles 
for an advanced EV. Moreover, refueling would require approximately 6 hours. Clearly the 
refueling time of an EV cannot be valued at the same rate as that of a liquid or gaseous fueled 
vehicle, yet it still has value and vehicle owners would undoubtedly be willing to pay something to 
reduce it. 

Fuel Quality issues could be significant, yet there is little basis at this time for assigning fuel quality 
values to different fuels. Four varieties of potential fuel quality issues have been raised, but due to 
inadequate information on consumer's perceptions of the qualities of alternative fuels we do not 
attempt to estimate values for them. 

1. Reliability of operation 
2. Maintenance costs 
3. Health and safety (e.g., toxicity, flammability) 
4. Aesthetics (smell, appearance) 

For most fuel quality issues, there is insufficient evidence on which to base even a crude estimate 
of consumer perception. We do know that consumers will pay for premium and mid-grade gasoline, 
many of them despite the fact that their engines do not require the higher octane of premium. Higher 
octane, "premium grade" gasolines may in some cases contain more additives (e.g., to clean fuel 
injectors) than regular grade fuel, although there is considerable controversy over whether motorists 
are paying for perceived rather than real differences in fuel quality (Dougher, Hofmann, and 
Hogarty, 1990). Based on an econometric analysis of consumers' choices between leaded regular, 
leaded premium, unleaded regular, and unleaded premium, Greene (1989) estimated the average 
willingness to pay for higher octane fuel at 1-2 cents per octane number per gallon. This would 
imply a 5-10 cent per gallon willingness to pay for premium versus regular grade gasoline. To the 
extent that consumers are buying other premium qualities besides octane, these are included in the 
1-2 cents/octane number/gallon estimate. Although there is some evidence that consumers will pay 
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more for fuels they believe to have higher quality, there is presently very little basis for evaluating 
the value to consumers of the perceived quality of each alternative fuel. 

We assume that all alternative fuel vehicles will be equally reliable and equally safe. Although there 
may well be some differences, it does not appear that reliability, maintenance, or safety and health 
effects will pose any particular problems for the alternative fuels we consider. It is likely that 
consumers will perceive different aesthetic values for alcohols, gaseous fuels, and electricity, but 
we know of no studies that can provide a basis for estimating monetary values for such aesthetic 
characteristics. It has been claimed that maintenance may be lower for EVs (DeLuchi, Wang, and 
Sperling, 1989), but battery replacement costs will probably eliminate this potential advantage, 
depending on the state of battery technology. 

Vehicle performance characteristics that are related to fuel and engine type consist of driveability 
and acceleration capability (Bechtold, 1993). Driveability refers to ease of starting and a relatively 
smooth and linear response to the accelerator pedal. AFV fuel systems are already rapidly 
approaching the smooth and predictable response of conventional gasoline systems, and we see no 
reason to believe that AFV driveability will not be equal to gasoline vehicles in the 2000 to 20 IO 
period. 

Acceleration capability will vary, due to changes in 1) fuel properties (e.g., octane number), and 
2) vehicle weight. The net effect of either type of change can be expressed as an effective change 
in the ratio of horsepower to weight. Octane ratings of 99 or 100, together with a higher latent heat 
of vaporization should give flexible fuel vehicles higher power when running on alcohols.'' 
Dynamometer tests have shown a 6% gain in horsepower for engines optimized for gasoline, but 
running on M85 or E85 (Bechtold, 1993). Gaseous bi-fuel vehicles will have reduced acceleration. 
Bi-fuel natural gas vehicles (NGV) and LP gas vehicles (LPGV) deliver fuel to the engine in a 
gaseous rather than a liquid state. The fuel thus displaces air that would otherwise have been drawn 
into the cylinder, effectively decreasing the engine's displacement. This volumetric efficiency loss 
is estimated to be 10% for bi-fuel NGVs and 5% for bi-fuel LPGVs (Bechtold, 1993). Battery 
electric and bi-fuel gaseous energy systems add significantly to the weight of the vehicle. Bechtold 
(1993) has estimated weight increases of 3-4% for LPG cars and light trucks, and 4-6% for NGVs. 
The extra weight of batteries are likely to cause EVs to weigh 25-30 percent more than a comparable 
conventional vehicle. On the other hand, the electric motor can easiIy be sized to provide equal if 

'Qigher latent heat of vaporization results in a greater absorption of heat from the air in the intake charge 
when fuel is injected into a cylinder. This produces greater cooling of the gases in the cylinder, reducing the 
work required to compress the charge, thereby increasing the engine's output. 

21 



not superior acceleration at equal or lower cost (batteries not included). The combined effects are 
summarized in Section 3.1 . l .  For the purpose of modeling the vehicle and fuel choice decision, it 
is important to recognize that the weight changes affect vehicle performance regardless of which 
fuel is used, while the volumetric efficiency, latent heat of vaporization, and octane effects are 
specific to the fuel being used. 

The extra storage tanks of bi-fuel vehicles and the additional volume likely to be required in electric 
vehicles for battery storage will also likely necessitate compromises in vehicle design. I '  Modem 
vehicle designs are carefully optimized to use space efficiently, so that the additional space 
requirements of gaseous fuel storage are certain to require reduction in carrying capacity. We 
assume that cargo space rather than passenger space will be sacrificed, and that all of the additional 
fuel storage volume will translate into lost cargo capacity. 

A major reason for promoting alternative fuels is that they will produce social benefits in the form 
of reduced pollutant emissions and improved energy security. Revealed preference studies of motor 
fuel purchasing generally indicate that typical consumers will not individually and voluntarily pay 
to generate these social benefits. However, in several stated preference surveys, consumers say they 
are willing to pay on the order of 2-5 cents per gallon more for fuels with much lower emissions than 
conventional gasoline (Golob, et al., 1992). In a recent survey of car owners in New York and 
California (Setiawan, Hungerford, and Sperling, 1990), roughly 50% of respondents stated that they 
would pay $0.10 or more for fuels that "produced less air pollution" than gasoline. The consumers 
were not told in what context they would pay, however (e.g., involuntary tax or voluntary purchase). 
In our base case, we assume no individual willingness to pay for social benefits.'* This assumption 
can be easily changed, however, to explore other possibilities. 

"DeLuchi, Wang, and Sperling (1989) argue that space savings due to the absence of an exhaust system 
and pollution control equipment, in conjunction with the smaller size of an electric drivetrain, will totally 
compensate for the greater volume required for energy storage. 

"This is not meant to imply no collective willingness to pay. For example, motorists may be more willing 
to pay for "cleaner fuels" if everyone pays, and thus might support a price subsidy for clean fuels although they 
would not pay more at the pump on their own initiative if there was no guarantee that others would pay their 
share. 
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2.4 STRATEGY FOR CALIBRATING THE AFVC MODEL 

In the following section we describe how the vehicle and fuel characteristics we have considered are 
transformed into coefficients of the AFVC model. Only the general methodology is described here. 
The key steps in the calibration process are, 

1. Specify the Characteristics of Alternative Fuels and Vehicles, 
2. Specify the Value per Unit for each Characteristic, 
3. Estimate a "Generalized Cost" as a Sum of the Dollar Value of AFV Characteristics, Plus 

Initial Costs (all in $hbl gasoline equivalent), 
4. Specify the Sensitivity of the Fuel and Vehicle Choice Decisions to Prices, and 
5 .  Transform the Values of Characteristics and Elasticities into MNL Model  coefficient^'^ 

AI1 costs are converted to units of 1990 dollars per barrel of gasoline equivalent, present value. The 
costs and values of fuel-specific variables are most naturally expressed in terms of dollars per gallon 
of gasoline equivalent. Most vehicle specific variables, on the other hand, will be in terms of dollars 
per vehicle, initial cost. The AFTM requires the logit model to determine the shares as a function 
of dollars per barrel of gasoline equivalent. It is therefore necessary to transform both vehicle- 
specific and fuel-specific costs into dollars per barrel of gasoline equivalent. This is done by 
multiplying initial costs by an annual capital charge rate and dividing by the average annual fuel 
consumption of a conventional gasoline vehicle in barrels of gasoline, and multiplying costs per 
gallon of gasoline equivalent by 42 (gaVBBL). The result is a generalized cost, in dollars per barrel 
of gasoline equivalent, for each fuel (in the case of fuel choice) or each vehicle type (in the case of 
vehicle type choice). 

To derive the MNL model coefficients the AFTM requires, the sensitivity of fuel choice to price 
must be specified. This is done by assuming price elasticities for the fuel and vehicle choice 
decisions, based on judgment informed by previous studies of fuel and vehicle type choice. A model 
to predict future choices among commodities that are not yet readily available cannot be calibrated 
to data on actual choices. As a result, we cannot be sure that the values we choose will be correct 
in the sense that they can be shown to be consistent with the real world. Thus, it is prudent to test 
the sensitivity of the model's predictions to key assumptions. Chapter 5 contains an analysis of the 
sensitivity of vehicle and fuel share predictions to assumptions about price elasticities and attribute 
values. 

I3This last step is optional since the transformation may easily be done within the AFTM model itself. 
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3. SPECIFICATION AND VALUATION OF FUEL AND VEHICLE 
CHARACTERISTICS 

In Section 2 the characteristics that distinguish among alternative fuels were described, and the 
theory and mathematical form of the nested multinomial logit choice model were presented. This 
section details the final steps required to complete the Alternative Fuels and Vehicles Choice Model: 
1) selection of numerical values for the characteristics of alternative fuels and vehicles, 2) 
conversion of those characteristics into dollar values (generalized costs), and 3) translation of 
generalized costs into coefficients of the NMNL model. The following section then explains how 
these processes have been implemented as a computer spreadsheet program. 

In this section the relevant characteristics of alternative fuel vehicles are specified and evaluated in 
terms of dollars per barrel of gasoline equivalent energy services. With the exception of battery 
electric vehicles, vehicle characteristics were taken from studies by Bechtold (1993a, 1993b) for the 
U. S. Department of Energy. Characteristics associated with the consumption of fuel are taken up 
first, followed by capital charges associated with the purchase of a given type of AFV. In the section 
on capital costs, the conversion of capital costs into a capital charge per unit of gasoline equivalent 
energy service is explained. 

3.1 CHARACTERISTICS ASSOCIATED WITH FUEL USE 

Characteristics accounted for as flows include refueling frequency, refueling convenience, fuel- 
specific performance changes, and the fuel option value for multi-fuel vehicles. Values were not 
estimated for fuel availability, perceived fuel quality, and social benefits. 

3.1.1 Refueling Costs 

The cost of greater refueling frequency due to decreased on-board energy storage capability is 
assumed to be the value of the additional time required. The relative increase in refueling (R) is 
computed by dividing the energy content of gasoline (E,) by the energy content of the alternative 
fuel (Ej) times one plus its efficiency gain or loss (ej). This is then multiplied by the ratio of gasoline 
tank size (Q,) to alternative fuel tank size (Qj), in physical units. 
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Estimated percent increases in refueling frequency ([R-l]x 100) and supporting data are shown in 
tables below. To obtain the cost increase in terms of dollars per gallon, we multiply the increase in 
relative refueling minus one (R-1), times the average refueling time for that fuel (Tj), times the 
assumed value of time (Vj), and divide this number by the assumed fuel purchase quantity (Qir), 
where r is the typical fraction of the tank that is replaced during refueling. This gives additional cost 
in dollars per unit of alternative fuel (usually per volumetric gallon). This is converted to dollars 
per gallon of gasoline equivaient energy by multiplying by E$[Ej-{ l+ej)]. 

(R-I) T V;. c, = 

Q* 
( 3 4  

Refueling convenience is represented as in increase in refueling time per event. This is computed 
as the difference between the alternative fuel refueling cost per gasoline equivalent gallon, minus 
the gasoline refueling cost per gallons delivered. 

The sum of equations (3.2) and (3.3) gives the total difference in refueling costs for a gasoline 
equivalent gallon of the alternative fuel in comparison to gasoline. 

Available evidence suggests that the fuel economy of flexible and bi-fuel vehicles will be nearly 
identical to that of conventional gasoline vehicles. A 1% fuel economy gain is assumed for fuel 
flexible methanol and ethanol vehicles using alcohol versus their fuel economy using gasoline 
(McNutt, 1993). Bi-fuel CNG and LPG vehicles using gasoline are assumed to achieve equal fuel 
economy, except for the weight penalty attributable to their extra fuel storage tanks. For CNG 
vehicles this increase will be in the range of 4-5%, and for LPG vehicles 3-4%, for fuel economy 
losses of about 3% and 2%, respectively (Bechtold, 1993a, Table 8; we assume a 1% increase in 
weight reduces MPG by 0.7%). Dedicated gaseous fueled vehicles are assumed to achieve the same 
MPG as a conventional gasoline vehicle. The alcohol flexible vehicle (M85 or E85) is assumed to 
achieve a 5% fuel economy advantage (McNutt, 1993). Electric vehicles should be about three 
times as energy efficient as conventional gasoline vehicles, when energy use is measured in kWh 
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from the electrical outlet and the extra weight of the battery system is taken into a~c0unt.I~ The 
assumptions and calculations underlying this estimate are shown in Table 3.1. The energy storage 
requirements, battery requirements, gross vehicle weight, and realized energy efficiency, shown in 
Table 3.1 (bold numbers) have been computed iteratively based on desired range, power train 
efficiency, battery characteristics, and typical depth of discharge. Assumptions about electric 
vehicles differ somewhat from those about internal combustion engine (ICE) vehicles. ICE vehicles 
are assumed to achieve 2 1.3 MPG on the road, which includes a shortfall of 30% from federal test 
cycle fuel economy. We assume that EVs will have regenerative braking, will have no idling losses, 
and will not travel at the same highway speeds. Their on-road correction has been therefore adjusted 
to only 10%. As a result, if a conventional vehicle achieves 2 1.3 MPG in actual use, a comparable 
EV will attain the equivalent of 27.4. In terms of miles per gallon of gasoline equivalent energy, 
however, the EV does much better due to its inherently more efficient (5.5 times) powertrain. 
MileskWh are computed by multiplying 27.4 MPG by 5.5, then multiplying by the ratio of Btu/kWh 
to Btdgallon and finally correcting for the efficiency loss an EV suffers due to the additional weight 
of its batteries. Since this loss is not known until the weight of batteries relative to the weight of the 
vehicle is known, mileskwh must be computed iteratively. 

The calculations in Table 3.1 proceed as follows. First, energy storage required to achieve the 
desired 100 mile operating range is computed. Second, the weight of batteries required for the 
necessary energy storage is computed, and vehicle weight is revised. Third, energy efficiency is 
adjusted due to the increase in weight, requiring a recalculation of energy storage and battery 
requirements. Calculations are made iteratively until convergence is reached. Finally, the cost of 
the required batteries is computed. 

"Efficiency" in Table 3.1 is the product of MPG, the "Relative Powertrain Efficiency" of the EV, 
one minus the "Net Efficiency Loss Due to Weight" times the ratio of Btu/kWh to Btulgal. of 
gasoline. Here the lower heating value of gasoline is used for comparability to the energy available 
for useful work in a kWh of electricity. The "Energy Required" equals the "Desired Range" divided 
by the "Depth of Discharge" (the nominal or maximum range) divided by "Efficiency." The volume 
and weight of energy storage is computed by dividing "Energy Required" by the appropriate "Energy 
Density." Because an EV without batteries is lighter than a conventional vehicle by about lo%, the 
average vehicle weight is first adjusted downward before the weight of batteries is added. The 
weight of additional structural support for the batteries is then added to give total gross EV weight. 

''Considering the overall efficiency of primary energy conversion to electricity at the outlet of 30%, battery 
electric vehicles are close to conventional gasoline vehicles in terms of primary energy efficiency. 
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Table 3.1 Estimation of Battery Electric Vehicle Characteristics 

Desired Range 
Efficiency (mi/kWh) 
Depth of Discharge 
Charger Efficiency 
Battery Efficiency 
Relative Powertrain Efficiency 
Battery Energy Density (whkg) 
Volumetric Energy Density (wh/l) 
Net Energy Storage Required (kWh) 
Gross Energy Storage Req. (kWh) 
Energy Storage Required (kg) 
Energy Storage Required (1) 

Initial Vehicle Weight 
EV Weight Reduction (minus 
battery) 
EV Gross Weight (incl. battery) 
Additional Structural Support (Ib/lb) 
EV Gross Weight (incl. battery) 
Net Increase in Weight (YO) 
Net Efficiency Loss due to Weight 
(%) 

Estimated OEM Battery Cost 

Estimated OEM to Retail Markup 
Estimated Battery Cost 
Cost Difference of EV (minus 
battery) 
Net Cost Difference of EV 

($kwh) 

Estimated Recharging Time (hrs.) 

100 
3.99 
0.75 
0.90 
0.75 
5.50 
80.0 

150.0 
33.4 
53.7 

417.7 
222.8 

EV MPG 
27.4 
MPGEG 
From Outlet 
91.1 
Rel. Eff. 
428% 

1.0 gals. gasoline 

919.0 lbs. 
58.9 gals. 

1609 3539 lbs. 
10.0% 
1866 
0.07 
1883 4104 lbs. 

17.1% 
10.5% 

$1 10 
50% 

$5,514 
($500) 
$5,014 

6 

BtukWh Gasoline 
3412 MPG 
Btu/Gal 21.31 
1 15400 In-Use 

Factor 
Gasoline 

In-Use 
Factor 
EV 90% 

70% 

Sources: DeLuchi, Wang, and Sperling, 1989; Automotive Engineering, 1992. 

"Net Efficiency Loss due to Weight" is computed assuming an elasticity of energy efficiency with 
respect to weight of -0.7. Once convergence has been achieved with respect to weight and 
efficiency, the cost of batteries is computed. Here we assume $1 1OkWh production cost and a 50% 
retail markup. We subtract $500 from this estimate to account for the otherwise lower cost of an EV 
without batteries. 
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The relative efficiency factor to be entered in the AFVC model "Refueling" spreadsheet (see Section 
4.2) is the MPG in energy equivalent gasoline gallons energy from the electrical outlet, divided by 
the gasoline MPG, not the EV MPG (91.1/2 1.3 = 4.28 or 428%). The relevant energy storage value 
for the AFVC "Refueling" spreadsheet is the "Gross" rather than the "Net" energy storage 
requirement (53.7 kWh). The "Gross value accounts for charger and battery efficiency losses and 
thus represents energy required from the outlet rather than from the battery. It also adjusts for the 
difference between the higher heating values for fuels used in the AFVC spreadsheets and the lower 
heating value used here. 

The lower energy densities of alternative fuels and the need for dual fuel storage systems in bi-fuel 
vehicles result in reduced operating ranges for some alternative fuels and thus increased frequencies 
of refueling. With the exception of EVs, all energy storage capacities for AFVs are given in terms 
of gallons of gasoline equivalent energy (Table 3.2). CGVs, BiFNGVs, and BiFLPGVs are all 
assumed to be equipped with 15.4 volumetric gallon fuel tanks. FFVs are assumed to have 18 vol. 
gallon tanks, enabling them to store 10.2 GEG of M85 and 12.8 GEG of E85. Bi-fuel CNG vehicles 
are assumed to have only 5.2 GEG of CNG storage capacity, while BiFLPGVs will be able to store 
14.6 GEG due to the relatively high energy density of LPG stored in liquid form. 

Refueling times are derived fiom those presented in Bechtold (1993a), except that it is not assumed 
that owners of bi-fuel vehicles will always refuel both storage systems simultaneously. Bechtold 
(1993) assumes that bi-fuel operators will use up their gaseous fuel, switch to gasoline, and refuel 
after using 25% of their gasoline storage. This places a strong constraint on the relative shares of 
natural gas and gasoline consumed by these vehicles which is contrary to the economic theory of 
fuel choice underlying the AFVC Model. Instead, it is assumed that either fuel will be used 
independently, and that simultaneous refueling will not be possible. It is assumed, however, that 
essentially all of the alternative fuel will be used by bi-fuel vehicles before refueling and that little 
or no reserve will be maintained. Bechtold (1993a) assumes that all other vehicles will maintain a 
90 mile reserve, approximately 1/4 tank and that assumption is made here, except for electric 
vehicles which are assumed to have a practical range of 100 miles when recharging at 25% of full 
battery charge. 

The above assumptions are used to compute the time cost of refueling, assuming time spent 
refueling is valued at $10/hour for all vehicles except EVs, for which it is valued at $1 .OO per hour. 
The value of time for EV refueling is highly uncertain. Clearly, time spent recharging by slow 
recharge methods that require on the order of six hours for a complete recharge, is qualitatively 
different fiom the few minutes spent reheling a conventional vehicle. One is a sizable block of time 
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Table 3.2 Alternative Fuel Vehicle On-Board Fuel Storage Capacities and Refueling Times 

Tank Size Refueling Time 
Vehicle & Fuel Type (GEG) (Min) 

Conventional Gasoline 15.4 6 

FFV 
Gasoline 
M85 
E85 

Bi-Fuel NGV 
Gasoline 
CNG 

Bi-Fuel LPG 
Gasoline 
LPG 

Dedicated CNG 

Dedicated LPG 

Alcohol Flexible Vehicle 
M85 
E85 

18.0 
10.2 
12.8 

15.4 
5.2 

15.4 
14.6 

10.4 

15.4 

10.2 
12.8 

6.5 
6.5 
6.5 

6.0 
8.0 

6.0 
6.5 

8 

6.5 

6.5 
6.5 

that allows other activities (sleeping, working) to take place simultaneously while the other demands 
nearly full attention for its brief duration. Past studies have viewed this battery EV characteristic 
as a limitation on the vehicle's capabilities, rather than a cost for time (e.g., Charles River Assoc., 
Inc., 1981; Beggs and Cardell, 1980; Train, 1980). Nonetheless, the long recharging times assumed 
here definitely impose a nontrivial cost, and the values we have assumed appear to be plausible 
though very uncertain. 

3.1.2 Fuel Option Value for Multi-Fuel Vehicles 

In a static equilibrium model such as the AFTM, there is only one price for each fuel. Thus, a fuel 
is unambiguously cheaper, equal in price, or more expensive than another. In reality, fuel prices 
fluctuate over time, so that a fuel that is on average more expensive may occasionally be cheaper. 
Flexible fuel vehicle owners have an option to select whichever fuel is cheapest at any time. This 
gives flexible fuel vehicles a cost advantage over single fuel vehicles that is not reflected in any 
other variable in the vehicle choice model. Whether or not such an option value should be included 
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in a static equilibrium model is an open question. At the very least, it requires a reinterpretation of 
the static equilibrium framework. Perhaps the most straightforward is to interpret the prices of an 
AFTM forecast as expected values of prices which are actually random  variable^.'^ Under this 
assumption, the fuel price for a single fuel vehicle is adequately captured by its expected value, but 
the fuel price for a flexible fuel vehicle is not, since the owner has an option to select the cheaper 
fuel at any given time. 

Consider a set of T pairs of fuel prices (indexed t) for the conventional and an alternative fuel 
(p,p,>. Suppose we divide this set into two parts, a subset C which contains all the pairs for which 
the conventional fuel is cheaper (p,<p,), and a subset A defined by pat<pct. The average prices for 
the fuels are, 

T 

t= 1 

P , = y C P ,  1 9 
T 1 

P, = - c Pa 
T t-1 

(3.4) 

Assume that pairs were generated in such a way that each pair is equally likely to occur (Le., the 
pairs are random).I6 The relative frequency (or probability density) associated with each pair is 
therefore 1 /T. 

We define the option value of the flexible fuel combination [c,a] as, 

Where the f indicates that the difference in means (p,-pa) will be subtracted if pa>pc and added 
otherwise. We substitute the average price equations (3.4) into equation ( 3 . 9 ,  separating the 
summation over T into two parts corresponding to the sets C and A. 

'%is interpretation further requires that decision-makers are risk neutral to avoid having to consider the 
distributions of variables in computing an equilibrium solution. 

I6Another notion is that the pairs represent a time series of prices. 
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Combining and canceling terms gives the average price advantage of being able to buy the cheapest 
fuel in comparison to a single fuel vehicle using the cheaper of the two fuels. If we assume that 
pa>pc, then we should subtract the term in square brackets. The two terms involving summation over 
A will cancel so that the option value is, 

An interesting result that follows from the above is that the average price reduction available with 
a flexible fuel vehicle versus a single fuel vehicle which uses the fuel with the Zowest average price 
is exactly equal to the average price reduction attainable with a flexible fuel vehicle versus a single 
fuel vehicle which uses the fuel with the highest price minus the average price advantage of the fuel 
with the lower average price. Thus, in comparison to a single fuel vehicle using the low price fuel, 
the option value of the flexible fuel vehicle is A. In comparison to the single fuel vehicle using the 
higher priced fuel, the multi-fuel vehicle's option value is A+(p,-pa). The difference in average 
prices is taken into account in the nested multinomial logit choice model, which is a function of 
average prices. The utility of a single fuel vehicle using the higher priced fuel is computed using 
that higher price and thus reflects its greater average cost. For the fuel flexible vehicles, both prices 
are used in computing the logsum value, but the prices are assumed to be constant. The NMNL 
model treats the average prices as if they were constant prices (i.e., as if there were a static 
equilibrium). Using the assumptions stated above, the option value term, A, accounts for the fact 
that prices are not constant. 

Estimation of the fuel option value for flexible and bi-fuel vehicles is based on fuel prices estimated 
by the AFTM, together with assumed price distributions based on an analysis of historical price 
series. For each multi-fuel vehicle, fuel prices are assumed to follow a bivariate normal probability 
distribution." The bivariate normal distribution is specified by the mean prices of the two fuels 
(pg,pa), their standard deviations (ug,ua), and the correlation of their prices (p). The integral over 
the region where pa<pg of the product of the price difference (p,-p,> and the bivariate normal density 
function (f{p6,pa,ug,ua,p}) gives the expected advantage of being able to buy the alternative fuel 
whenever it is cheaper. Similarly, integrating the product of (f(pg,pa,ugrua,p}) and pa-ps whenever 
gasoline is cheaper, gives the expected advantage of the option to buy gasoline when it is cheaper. 

"A trivariate normal distribution of gasoline, ethanol, and methanol prices would be most appropriate for 
FFVs. Because this greatly complicates the spreadsheet implementation, and because the option value for 
ethanol versus gasoline or methanol is approximately zero, we use a bivariate distribution based on methanol 
and gasoline prices to compute the option value for FFVs. 
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Subtracting the expected price difference between the two fuels from the sum of the two integrals 
gives the advantage of having the option to buy cheaper fuel as prices vary, over using the fuel with 
the lowest average price all the time. We define this difference as the option value of the FFV. 

We compute the option value by numerical integration of a specified density function. We use 
predicted prices as the mean price parameters off. Values of p and u have been chosen based on 
an analysis of annual fuel prices from 1978 to 1992 (Figure 3.1). For liquid fuels, representative 
values of the parameters appear to be p=0.9 or higher, and u, and ug equal to 25-30% of the mean 
(Table 3.3). Gaseous fuels (propane, commercial natural gas, and residential natural gas) are highly 
correlated with each other (~50.9) but much less strongly correlated with the prices of liquid fuels 
(p values range from 0.22 to 0.66). In addition, the variation in prices of gaseous fuels has been 
lower, standard deviations being on the order of 15% of the mean. No doubt, this is partly 
attributable to historical regulation of the natural gas market. Strictly on the basis of these historical 
data, one would choose 0~0.3 and ~ ~ 0 . 9 5  for liquid fuels, and 0 ~ 0 . 1 5  and ~ ~ 0 . 5  for gaseous fuels. 
However, there is reason to expect that correlations among prices would be more similar to those 
of liquid fuels given a substantial transportation fuel market for gaseous fuels. It is also possible that 
gaseous fuel prices could be come more volatile in the future in the absence of price regulation. 

In general, the closer the mean prices, the larger the standard deviations, and the smaller the 
correlation between their prices, the larger the option value will be. Example options values and key ’ 
assumptions are presented in Table 3.4. 

Strictly speaking, option values should be determined simultaneously with the overall market 
equilibrium for fuels. Option values tend to be small relative to mean prices, however, so that 
changing the option values will have little effect on the world equilibrium energy prices. This 
suggests that if prices from an initial run excluding option prices are used to compute the option 
prices and then the new AFVC model coefficients are substituted into the AFTM and it is rerun, 
hrther iteration will not be necessary. Initial experimentation has borne this out: changes in world 
fuel prices on a second iteration have been $0.01 per barrel or smaller. 
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Table 3.3 Variation and Correlation Among Fuel Prices, 1978-1992 

~ 

Aviation Motor Jet No. 1 No. 2 Residential Commercial 
Gasoline Gasoline Kerosene Fuel Distillate Distillate Oil Propane Nat.Gas Nat.Gas 

Mean 
~ 

114.4 92.5 93.5 78.5 84.0 76.4 55.6 67.5 5.5 1 4.87 

Standard Deviation 
(Coefficient of Variation) 

29.1 29.0 26.0 27.7 26.6 25.3 23 .O 9.2 0.80 0.83 
(25%) (3 1%) (28%) (35%) (32%) (33%) (41%) (14%) ( 14%) (1 7%) 

~~ 

Correlation Coefficients 

Av Gas 

Mo Gas 

Kerosene 

Jef Fuel 

No. 1 D 

No. 2 D 

Resid. 

Propane 

Res. Gas 

0.92 0.99 0.96 0.98 0.95 0.93 0.58 0.57 

0.93 0.99 0.96 0.98 0.96 0.26 0.22 

0.97 0.98 0.96 0.95 0.57 0.52 

0.99 0.99 0.97 0.39 0.35 

0.99 0.97 0.47 0.45 

0.98 0.37 0.36 

0.43 0.40 

0.9 1 

0.7 1 

0.4 1 

0.67 

0.53 

0.62 

0.58 

0.58 

0.90 

0.97 
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-- 

Table 3.4 Estimated Option Values for Pairs of Alternative Fuels and Gasoline 
(Prices in 1990 $ per gallon)' 

Fuel Expected Price 

Net Expected Value 
Expected Price of Multi-Fuel Option 
Difference v. 

Gasoline ($/bbl) 
~ 

M85 

E85 

CNG 

LPG 

~~ 

$48.04 -$4.18 $0.0 18 $0.76 

$72.52 $20.30 $0.001 $0.04 

$64.88 $12.66 $0.003 $0.13 

$49.15 -$3.07 $0.026 $1.09 

'Assumes a correlation of 0.9 and coefficient of variation of 0.25 for each fuel. 

3.2 CAPITALIZED VALUES 

Certain alternative fuel characteristics are inherently capital charges. The incremental cost of AFV 
technology is the most obvious example. Other characteristics are most readily evaluated as capital 
costs (or values) because of the nature of the information available on the value consumers attach 
to them. Changes in performance and the cost of cargo capacity converted to fuel storage fall into 
this category. Despite the fact that performance is experienced over time as the vehicle (and fuel) 
are used, most information comes from studies of motor vehicle demand and is expressed in terms 
of dollars per vehicle, initial price equivalent. All capital costs must be converted into dollars per 
barrel of gasoline equivalent energy service in order to be consistent with the AFTM methodology. 
How this is done using the concept of a capital charge rate is explained below. Next, incremental 
costs of AFVs are discussed, followed by performance changes and the effects of fuel storage on 
cargo capacity. 

3.2.1 Estimation of Capital Costs per Barrel of Gasoline Equivalent 

Characteristics of the elementary choices (the fuel and vehicle combinations illustrated in 
Figure 1.1) can be divided into two types: 1) those associated with the use of a particular fuel that 
are experienced by the consumer only when that fuel is used, and 2) those associated with a vehicle 
that are experienced whenever the vehicle is used, regardless of which fuel powers it. Because the 
prices that drive choices in the AFTM model are the prices of fuels expressed in dollars per barrel 
of gasoline energy equivalents (BGE), both fuel and vehicle characteristics must be valued in terms 
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of dollars per BGE. For characteristics that can be naturally expressed in terms of dollars per gallon 
(or $ per energy unit) this can be done by simply multiplying by 42. Characteristics that are more 
naturally expressed as capital costs (e.g., incremental vehicle cost) must be converted into dollars 
per barrel. This is done using a levelized cost method to compute a capital charge rate per barrel of 
gasoline equivalent energy service. 

Assume that a vehicle purchaser expects to own a vehicle for a period of Y=4 years, at which time 
he will resell. Let the cost of the vehicle be C, the depreciation rate for automobiles be 6-0.15 
(15%/yr.), and the real interest (or discount) rate be i=0.07 (7%). The cost of the investment to the 
purchaser is the initial capital cost minus the present value of the resale price. The annual cost, C,, 
is given by, 

Solving this for the capital charge rate R=(CJC), we get, 

which, if we plug in the above assumptions for i, 6, and Y, gives an annual capital charge rate of 
16.8%. We assume that all incremental capital costs (hedonic or financial) of A F V s  can be converted 
to equivalent annual charges in this way. 

To obtain an annual charge per barrel of gasoline equivalent energy service, we divide the annual 
charge by annual fuel consumption. Average annual fuel consumption equals overall miles driven 
divided by fleet average miles per gallon. The average household vehicle traveled 10,600 miles per 
year in 1991, according to the latest Department of Energy survey (U.S. DOEEIA, 1993, Table 5). 
Annual motor vehicle usage has remained in the vicinity of 10,000 miles per year for at least two 
decades (Davis and Strang, 1993, Table 4.18). Projections to 2010, however, call for vehicle stock 
to grow at a slower rate than vehicle use, resulting in increased annual miles per vehicle by 20 10. 
The U.S. Department of Energy (U.S. DOEEIA, 1993b, Table A-14) projected light duty vehicle 
annual miles of 1 1,383 and average fuel economy of 2 1.3 MPG for the year 20 10 giving an average 
annual fuel consumption of 12.7 barrels of gasoline.18 The same capital charge rate and annual 

"Any of these assumptions can be varied in the spreadsheet implementation of this methodology, described 
below. 
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barrels of gasoline are used for every fuel type regardless of the actual level of annual energy use 
required by that particular technology to produce the same number of vehicle miles. That is, the 
capital charge is therefore a charge per unit of energy service (vehicle miles), rather than per unit 
of energy use. 

3.2.2 Incremental Costs of AFVs 

FFVs and DFVs require additional fuel metering or fuel storage equipment, and may demand more 
costly materials. Gaseous fueled vehicles, in particular, require more expensive, space consuming 
fuel tanks, capable of storing fuels at 3,000 psi, or greater. Battery electric vehicles may cost less 
to manufacture, batteries not included, but the additional cost of batteries is likely to make their 
initial cost considerably higher than CGVs. Because AFVs are not in full-scale production, there 
remains considerable uncertainty about their eventual cost differences. Several studies suggest that 
the incremental costs based on Bechtold (1993a) shown in Table 3.5 provide a reasonable range 
(Wang, Sperling, and Olmstead, 1993; Interagency Commission on Alternative Fuels, 1990). In 
some cases, Bechtold (1993a) provides a clear high and low cost estimate. Where he does not, we 
assume a high cost 33% higher than his single cost estimate. For AFVs we assume $100 as a high 
estimate cost increment. 

Table 3.5 Incremental Initial Cost Estimates for AFVs 

Vehicle Type High Estimate Low Estimate 

FFV 
CNG DFV 
LPG DFV* 
CNG Dedicated 
LPG Dedicated 
Alcohol FV 
Battery EV 

$300 
$1,111 
$86 1 
$600 
$225 
$100 

$6,692 

$100 
$817 
$625 
$45 1 
$171 
$0 

$5,019 

'Bechtold (1993a) does not provide a cost estimate for original equipment manufacture 
(OEM) LPG vehicles. The estimate shown here is obtained by dividing Bechtold's estimated 
labor costs by two and using his material costs as given. 

3.23 Value of Performance Changes 

Performance advantages are specified in terms of an increase in horsepower per pound. Greene and 
Liu (1988) surveyed more than a dozen models of vehicle type choice and found a wide range of 
values for acceleration performance. They chose a typical value of $55/cidl,OOO lbs., which they 
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equated to $1 10/hp/1,000 Ibs. (1985$). For a typical 1985 vehicle with approximately 35 hp per 
1,000 lbs. (Murrell, et al., 1993) this equals $385 per 10% increase in performance (just over $450 
in 1990 $). In a stated preference survey of motorists in New York and California, Sperling, 
Hungerford, and Kurani (1990) found that about 50% expressed willingness to pay $O.lO/gal., or 
more, for a 10% increase in power. For a typical car, this equates to $250-$300 in purchase price. 
Because light duty vehicle performance has been steadily increasing over time and because we 
assume a decreasing marginal willingness to pay for performance increases, we choose a value of 
$25 per 1% increase in performance to value the performance differences of AFVs (Table 3.6). 

Table 3.6 Power to Weight Changes for Alternative Fuel Vehicles 

Power 

e 
Vehicle Type Chang Weight Change HPNT Change 

FFV using M85 or E85 +6% 0% +6% 

CNG Passenger Cars 

CNG Light Trucks 

LPG Passenger Cars 

-10% 

-10% 

-5% 

+4.2% to +4.7% 

+4.2% to +5.9% 

+3.7% 

- 16.0% to - 
16.6% 

-16.0% to - 
18.1% 

-9.3% 

LPG Light Trucks -5% +3.2% -8.8% 

Source: Bechtold, 1993, Tables 7 and 8. 

Sperling, et al. claimed that use of methanol in an FFV would give approximately a 10% increase 
in power, but this assumes that the FFV has been optimized for methanol, and will therefore run 
very poorly on conventional gasoline. Perhaps fuel-flexible vehicles will be designed to run 
somewhat better on alcohol than gasoline, but it is doubtful that anywhere near full advantage can 
be taken of the roughly 5-6 extra octane points. Similarly, natural gas has an octane rating of 120. 
DFVs that must also run well on gasoline could not take advantage of even a small fraction of 
CNG's additional octane rating without some sort of variable displacement design. To date, no 
Natural Gas Vehicles (NGV) that we are aware of derive any performance advantage from natural 
gas' high octane number. Thus, we assume no octane advantage for CNG DFVs. 

For CNG BiFNGVs there is also a volumetric displacement penalty, due to the fact that as a gas, 
CNG displaces air in the cylinder effectively reducing the size of the charge. Since natural gas 
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requires an air:fuel ratio of about ten to one for stoichiometry, the effective volumetric reduction 
is about 10% (Interagency Commission on Alternative Fuels, 1990).19 We assume that the 10% 
displacement penalty equates to a 10% performance penalty (Bechtold, 1993a). 

3.2.4 Value of Cargo Capacity 

The lower energy densities of gaseous fuels and electricity storage in batteries will require that 
significantly more space be devoted to energy storage for these types of alternative fuel vehicles. 
In addition, bi-fuel vehicles will require more space for their second fuel system. The shape and 
size of CNG storage tanks virtually require that they be stored in cargo space. Although innovative 
solutions to CNG storage may be developed, we assume that cargo space will be reduced. For bi- 
fuel CNG vehicles, we assume that all of the additional CNG storage volume will translate into 
reduced cargo volume. For dedicated CNG vehicles, we subtract the volume of a conventional 
gasoline tank from the CNG tank volume to estimate the net loss of cargo space. DeLuchi, et al. 
(1989) have argued that battery electric vehicles can be designed to accommodate batteries with 
no loss of passenger or cargo volume due to the reduced size of powertrain components. We 
subtract the size of a gasoline tank from the estimated required battery volume, then divide the 
remainder in half to allow for the powertrain advantage of an EV (Table 3.7). 

Table 3.7 Loss of Cargo Capacity to Energy Storage in Gaseous-Fueled 
and Battery Electric Vehicles 

Tank Volume Net Loss Net Loss 
(gallons) (gallons) (cu. ft.) 

Bi-Fuel CNG 33.3 33.3 4.5 

Dedicated CNG 68.4 49.9 6.7 

Bi-Fuel LPG 17.5 17.5 2.4 

Battery Electric 58.9 20.2 2.7 

Sources: Bechtold, 1993c; Table G, above. 

The value of cargo capacity is difficult to pinpoint. Few studies have attempted to estimate it, and 
those that have, have produced inconsistent results. For example, one recent study found that 

'%e volumetric performance loss of CNG dual fuel vehicles is the result of optimizing the engines to run 
on gasoline. Innovative design, perhaps using variable displacement design, could mitigate the performance 
loss. Such designs have not been used to date, however. 
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increasing trunk space actually reduced the likelihood of vehicle purchase for U.S. and European 
manufacture vehicles and had no effect on the desirability of Japanese vehicles, results the authors 
termed an "anomalies" (McCarthy and Tay, 1989). In an earlier study, Manski and Sherman (1 980) 
estimated that the value of one additional cubic foot of luggage space was worth between $44 and 
$238 (1  976 $), depending on the income and education levels of buyers. Train and Lohrer ( I  982) 
estimated marginal values per cubic foot of luggage space of from $1 18 to $365 (1978 $), with 
higher values for larger, higher income households. However, luggage space appeared as a 
significant variable only in their model for households owning one vehicle. In their multi-vehicle 
household analysis, luggage space was not a factor. The positive values appear to be high relative 
to estimates of consumer willingness to pay for passenger volume. In a survey of ten studies and 
14 models, Greene and Liu (1988) found a range of typical estimates of from $26 to $156 (1984 
$) per cubic foot of interior volume. In light of the facts that, 1) only three studies provide 
estimates of the value of cargo volume, 2) those that do present estimates are not consistent,Zo and 
3) cargo space should probably be valued at less than passenger space, we choose a value of $25 
per cubic foot as an estimate of the marginal value of cargo space lost to fuel storage. 

3.3 CALCULATION OF NMNL MODEL COEFFICIENTS 

Six AFV attributes are included in computing AFV-specific constants for the MNL model2': 

1 .  Initial Vehicle Cost 
2. Cost of Increased Refueling Due to Range Limitations 
3. Cost of Increased Refueling Time 
4. Value of Performance Increases or Decreases 
5.  Value of the FFV Fuel Option 
6. Value of Cargo Capacity Lost to Fuel Storage 

Seven vehicle types are considered as alternatives to the conventional gasoline vehicle (CGV): 

'ohconsistent parameter estimates across econometrically estimated vehicle choice models is a frequent 
problem. It appears to result from a combination of factors including the complexity of the vehicle choice 
decision and the large number of potential variables, the strong correlations among variables associated with 
vehicle size and luxury features, and the difficulty of formulating a model that takes into account all relevant 
factors to the diverse population of car buyers. 

2'An additional option that could be included in the future is estimated maintenance and repair costs. These 
are likely to differ across alternatives, especially between electric and internal combustion engine vehicles. 
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1. Flexible Fuel Vehicle (Using M85, E85, or Conventional Gasoline) (FFV) 
2. CNG Bi-Fuel Natural Gas Vehicle (BiFNGV) 
3. LPG Bi-Fuel Liquefied Petroleum Gases (BiFLPG) 
4. CNG Dedicated (NGV) 
5. LPG Dedicated (LPGV) 
6. Alcohol Flexible (Using M85 or E85) (AFFV) 
7. Battery Electric Vehicle (EV) 

3.3.1 Parameter Estimation 

Given the monetary values assigned to vehicle attributes parameters of the NMNL vehicle and fuel 
choice equations can be calculated by specifying fuel price slope coefficients for the vehicle and 
fuel choice models. The fuel price slope is estimated by specifying an assumed own price 
elasticity of demand at a specific market share and initial average vehicle price. It is convenient 
to use 50% as the initial market share, although any share percentage could be used. Initial 
elasticity estimates can be based on previous empirical studies of fuel and vehicle type choice. 
Given the price slopes, we can compute the alternative fuel intercept terms by multiplying the sum 
of fuel attribute values in dollars per barrel by the price slope. The price slope is the coefficient 
that translates dollars per barrel into the utility measure of the MNL model, Ui. Its units must 
therefore be "utils" per dollar. Multiplying the dollar value of nonvariable attributes by the price 
slope similarly transforms dollars into the MNL constant term (in utils). 

In the multinomial logit model, the elasticity (pi) of market share (si) for choice i=l,2 with respect 
to price (p) is, 

By rearranging, we can compute the MNL price slope parameter b. 

(3.10) 

(3.11) 

Thus, if we know or assume an elasticity at an arbitrary market share (e.g., 50%) and base price 
(say, $55/bbl), we can compute b directly from equation (3.1 1). Given a value for b, we can 
calculate the MNL model constants, A,, as the product of b and the sum of option i's attribute values 
(zkCk). 
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n 
A, = b CC, 

k= 1 
(3.12) 

Two recent studies of motor gasoline demand both indicate that the price elasticity of demand for 
similar motor fuels is very large. In a study of choice among premium leaded, regular leaded, 
premium unleaded, and regular unleaded gasolines, Greene ( 1  989) estimated price elasticities at 
50% market share of -15 to -20, for the years 1982-85. Using a different data set and estimation 
method, Phillips and Schutte (1988) estimated own price elasticities (at the mean values for their 
sample) for demand for full vs. self-service gasoline of -35 to -40. This evidence suggests that if 
FFV owners perceive gasoline and alternatives to be much like different grades or service levels 
of gasoline, demand will be very price elastic. Much lower elasticities of alternative fuel choice 
were obtained by Golob, et al. (1992) and Bunch, et al. (1993) using the California Energy 
Commission's recent stated preference survey. Using an estimated fuel cost per mile of 8 cents per 
mile (the average of the choices described to respondents) the elasticity of fuel choice for a multi- 
fuel vehicle would be about -3. This is three times as large as the elasticity of vehicle choice (about 
- 1 at 50% share and average price) obtained in the same survey. Thus, the CEC stated preference 
survey results tend to confirm the belief that fuel choice is much more elastic than vehicle choice, 
which is consistent with the nested choice structure used here. The stated preference elasticities, 
however, are much smaller than those found in revealed preference studies of gasoline grade 
choice. Two reasons for this difference may be the fact that gasoline grades are more similar than 
alternative fuels for multi-fuel vehicles, and that the hypothetical stated choice situation gives 
greater importance to unobserved attributes. The more dissimilar the fuels are, the lower the own 
price elasticity should be. Thus, the choice between gasoline and compressed natural gas should 
be less price elastic than the choice between premium and regular grade gasoline. The derivation 
of the logit model in Appendix A shows that the variance of the random error term representing 
unobserved attributes in the MNL model is inversely related to the price elasticity. In a 
hypothetical choice, stated preference survey more is left to the respondent's imagination and so 
the importance of unobserved attributes is very likely to be exaggerated relative to a real-world 
choice situation in which the options are familiar. 

Numerous studies have estimated the price sensitivity of vehicle type choice decisions. In nearly 
all, however, the choice is among passenger cars or light duty vehicles of all types, large and small, 
luxury and economy. The AFVC model assumes that consumers are choosing among vehicles that 
are virtually identical, except for characteristics related to alternative fuels. Perhaps the best 
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analogy for this situation comes from a study of the choice of diesel versus gasoline powerplants 
for specific makes and models of passenger cars over the period 1979-1983 (Greene, 1986). 
Estimated price slopes ranged from -0.00029 (for Mercedes) to -0.00205 (Buick). The average 
price of a passenger car in 1983 was $10,640 (1993$; MVMA, 1989, p. 40). Assuming a car price 
of $10,000, a price slope of -0.002 gives an elasticity of - 10. A price slope of -0.0003 and price of 
$30,000 implies and elasticity of -4 at a 50% share. These price elasticity estimates are 
considerably higher than those for choices across all types of vehicles. A survey of a dozen such 
models chose -0.00056 as a typical price slope, which given a $10,000 vehicle price and a 50% 
share results in a price elasticity of -2.8. The pioneering estimation of a MNL model of vehicle 
type choice by Lave and Train (1979) produced a typical price slope of -0.00066, implying a price 
elasticity of -3 at 50% market share. 

The price elasticity of fuel type choice for multi-fuel vehicles should be lower than that for choice 
of grade of gasoline (-40 to -20) but two to three times higher than for choice of alternative fuel 
vehicle. The price elasticity of AFV choice should be similar to that found by Greene (1986) for 
diesel engine choice (about -5 to -lo), and higher than that in studies that consider choices across 
all vehicle types (about -3). Based on the available empirical studies, a range of elasticities of -20 
to - 10 for fuel choice and -5 to - 10 for vehicle choice appears to be reasonable, although higher 
elasticities might be justifiable. 

For each multi-fuel vehicle type (i), a fuel price elasticity (pi) at a specified market share (si=50%) 
is assumed. Given an initial gasoline price, the fuel price slope (bi) is computed using the price of 
gasoline, pi, and si. 

(3.13) 

In the absence of information to the contrary, we assume the same elasticity for all multi-fuel 
vehicle types although this assumption can be easily changed. The values of non-price fuel-specific 
attributes (V,) are then summed to obtain an overall hedonic value per gallon of gasoline 
equivalent. This is converted to barrels by multiplying by 42. The hedonic value in dollars is 
converted to a fuel-specific logit coefficient, A,, by multiplying by the respective fuel price 
slope, bi. 
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3.3.2 Estimation of Inclusive Values for Multi-Fuel and Single-Fuel Vehicles 

In a random utility model such as the NMNL, an option does not have a fixed value but rather a 
probability distribution of values. As a result, the value of a nested set of options cannot be 
described simply by the average of the values of its components or even by the value of its most 
desirable option." Instead, the ability to choose the highest value option from among those in the 
nested set gives the set a higher expected value than that of any single choice in the set. The 
expected cost of a nested choice set is given by equation (2.9) in Section 2, above. 

The inclusive value, or expected generalized cost of a nest is passed directly to the respective 
vehicle choice equation, where it is added to the generalized cost of the vehicle-specific 
characteristics (see eq. 2.10) and multiplied by the vehicle price coefficient, p, to yield the 
generalized cost for the vehicle type (i). For single-fuel vehicles the inclusive value term collapses 
to the generalized cost of the fuel-specific characteristics for that vehicle type, cil = ci. 

- 
Multi-Fuel: C, = P(u, + c,) Single-Fuel: Cr = P(u, + CS (3.14) 

Vehicle shares may then be computed using equation (2.10). 

221n the case where the generalized cost coefficient is very large, the value of the nested choice set will 
approach the expected value of the single option with the greatest expected value. 
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4. IMPLEMENTATION OF THE ALTERNATIVE FUEL VEHICLE 
CHOICE MODEL AS A SPREADSHEET 

The Alternative Fuel and Vehicle Choice (AFVC) Model has been implemented in the form of a 
computer model using the Excel spreadsheet software. Seven spreadsheets combined as an Excel 
Workbook comprise the model. The individual worksheets are: 

1. AFTM and AFVC Scenario, 
2. Calculation of Value of Range and Refueling Time, 
3. Calculation of Performance Values, 
4. Calculation of Value of Lost Cargo Space, 
5. Calculation of Fuel Choice Option Values, 
6. Calculation of AFVC Model Parameters for AFTM, and 
7. Macro Spreadsheet to Control Printing and Recalculation. 

This section describes each spreadsheet and its operation. The sole function of the Macro 
spreadsheet (7) is to print each of the other six thereby documenting a particular model run. Details 
of this spreadsheet will therefore not be described here. 

4.1 AFTM FUEL AND VEHICLE CEOICE SCENARIO 

The "Scenario" spreadsheet contains the key assumptions used in the other spreadsheets to value 
AFV attributes and calculate logit coefficients. Five categories of data are included: 

1. AFV characteristics, 
2. vehicle economics, 
3. vehicle attribute (hedonic) values, 
4. fuel prices, and 
5. choice elasticity assumptions. 

The "Scenario" spreadsheet serves as a convient, single table in which to enter all the critical 
numerical assumptions for the AFVC model (Figure 4.1). 
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Figure 4.1 AFTM Fuel and Vehicle Choice Scenario 

fuel Prlcer WbM G q  
Gasoline $56.02 

Reformulated Gam. $58.80 
M E  $55.86 
EB5 $75.18 

CNG $55.02 
LPG $49.56 

EWric $107.93 

Yehklr Economkg 
AnnualMiles 11,383 

A q M P Q  21.30 
Discarnt rate 7.0% 

Depredaionrate 15.0% 

Capital recowry factor 0.166 
Base V e h i  Ptiw $16,700 

Yean of ownership 4 

Hedonic Values 
Valw of cubic foot of cargo space 
Valw of 1% change in H.P./Wt mtio 
Valw of hour to refud (m * I  
Valw of houf to dud  e k d c  M i  

Flastlcttv Spcclflcatlonr 
vehicb: baw rham 
vehicb: d w t i i  

Fuel: base share 
Fud: elmtic@ 

$25.00 
$25.00 
$10.00 
$1 .00 

50% 
-10.00 

Fbx-Fud Veh. CNG Bifud LPG B i  Alcohol Dad. 
50% 50% 50% 50% 

-20.00 -20.00 -20.00 -20.00 

Vehcb 

R d a i v e  Change Storage Stofage Refueling Search Additional 
Energy InVehi i  Change Spaw inunits Tim Tim vehicost 

Fuc( jY f i i r  Weiay jn H.P. laallom) @I. sd. kWh lminutes) fminutes) fiNehicle] 



Nine characteristics must be entered for each AFV: 

1. Relative efficiency (per gallon of gasoline energy equivalent) 
2. Change in vehicle weight (versus CV) 
3. Change in horsepower 
4. Fuel storage volume 
5. Quantity of fuel stored (in customary units, not used) 
6. Refbeling time 
7. Fuel search time (not used) 
8. Additional vehicle cost 

Relative efficiency is specified as a percent of conventional gasoline vehicle and assumes that 
efficiency for all vehicle types has been measured on the basis of energy equivalent to one gallon 
of gasoline. Change in weight is the percent increase or decrease versus a conventional vehicle, 
and change in horsepower is similarly measured. Storage space must be given in gallons, and must 
represent the total volume required by the fuel storage system which is slightly greater than the 
volume of fuel stored. Storage in units is the quantity of fuel stored, given in customary units: 
gallons for liquids, standard cubic feet (SCF) for gases, and kilowatt hours (kwh) for electricity. 
Refueling time is given in minutes and represents only the time spent refueling, not the time spent 
traveling to or searching for a refueling station. Again, it is assumed that multifuel vehicles must 
be refueled one fuel at a time. Search time has been included for possible future use but does not 
enter into any current AFTM scenarios. Additional vehicle cost is the incremental purchase cost 
of the AFV to the consumer. Note that changes in weight, storage space, and additional cost are 
vehicle-, but not fuel-specific. All other variables are vehicle- and fuel-specific. 

Vehicle economic factors include average annual miles per vehicle, average miles per gallon, and 
average sales price of a new gasoline vehicle. Three additional variables must be supplied to 
compute the capital recovery factor: (1) the annual real discount rate, (2) the annual capital 
depreciation rate for light duty vehicles, and (3) the estimated term of ownership for new car 
buyers, in years. 

Hedonic values, dollar values per unit of vehicle characteristic or per time, must also be specified 
in the "Scenario" spreadsheet. The tow hedonic parameters required are the value of one cubic foot 
of cargo space and the value of a 1 % change in the ratio of horsepower to vehicle weight, a measure 
of performance. Two values of time must be entered, one for refbeling a11 but electric vehicles 
(EVs), the other for the time required to recharge EVs. 
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Price elasticities must be provided for the vehicle and fuel choice equations. Elasticities are 
unitless, representing the ratio of relative (%) change in market share corresponding to a relative 
(%) change in price. As noted above in the theoretical discussion of the AFVC model, the elasticity 
of fuel type choice must be greater in absolute value than that of vehicle type choice. In addition 
to a base price and elasticity, the market share at which the elasticity applies is required. 

Finally, price estimates per barrel of gasoline equivalent must be supplied for each fuel. These 
prices are used in the estimation of the value of the fuel choice option for multi-fuel vehicles. They 
should therefore be as close as practical to the final AFTM equilibrium prices for the scenario in 
question. This should require only one iteration to achieve reasonable convergence (producing a 
set of AFVC coefficients, entering them in the AFTM, running it and reentering the resulting prices 
in the AFVC spreadsheet). 

4.2 CALCULATION OF VALUE OF RANGE AND REFUELING TIME 

This spreadsheet estimates the cost of additional time spent reheling alternative fuel vehicles. The 
total change in refueling time is comprised of two components: (1) more frequent refueling 
(range), and (2) greater time required per refueling. The two are computed in terms of dollars per 
barrel of gasoline equivalent and added to produce the range and refueling time cost. 

The "Refueling" spreadsheet carries forward average annual miles traveled and average miles per 
gallon from the "Scenario" spreadsheet. In addition, it brings forward: (1) fuel storage capacity, 
in customary units; (2) relative fuel efficiency; (3) station time per refueling event; and (4) the 
value of time spent refueling. The energy content of a customary unit of fuel must be specified by 
the user in this spreadsheet (Figure 4.2). 

The first step is calculation of the range per refill for each fuel type. This is by definition either the 
(1) range on a full tank, minus a ninety mile reserve for liquid fuels, (2) ninety-five percent of the 
full range for bi-fuel gaseous fuels, or (3) seventy-five percent of the maximum range for battery- 
electric vehicles. First, storage in customary units is converted to storage in million Btu by 
multiplying tank size, Qi, by energy content Bi. Relative efficiency, R,, which is the ratio of AFV 
miles per gallon of gasoline equivalent energy to CV MPG, is multiplied by the ratio of AFV to CV 
energy storage capacity, and the product is multiplied by CV range to obtain the range for a "full 
tank," w. 
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Range per refill (Mi) is simply Mi - 90 for liquid fuels, 0.95 Mi for gaseous bi-fuel vehicles, and 
0.75 Mi for EVs. 

The cost per barrel of gasoline equivalent energy is computed as follows. Average annual miles, 
A, is divided by range per refill to obtain the average number of refills per year. This is multiplied 
by the estimated station time (converted to hours) required per refill (plus the search time which 
is assumed to be zero in all cases), times the average value of time, W, to obtain the total annual 
time cost of refueling, Ti. 

A 
m i  

Ti = - . ( t i /60) * W 

The annual refueling time cost is Ti, divided by the annual fuel consumption in barrels of gasoline 
to obtain refueling time cost per barrel of gasoline energy service equivalent. The incremental 
refueling cost per barrel is simply the AF refueling cost per barrel minus the gasoline refueling cost. 

4.3 CALCULATION OF LOST CARGO SPACE VALUE 

In general, alternative fuel vehicles will require more volume for energy storage than a 
conventional gasoline-powered vehicle. In this spreadsheet, assumptions about the on-board 
storage requirements of AFVs are translated into an equivalent loss of cargo space and the lost 
cargo space is translated into a dollar charge per barrel of gasoline equivalent energy service. 

Four data are passed from the "Scenario" spreadsheet to the "Cargo" spreadsheet (Figure 4.3): 

1. the average dollar value of 1 cubic foot of cargo space (C), 
2. the annual capital recovery factor (R), 
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Figure 4.3 Calculation of Value of Lost Cargo Space 

Value of cubic foot of cargo space 
Annual capital recovery factor 

Gasoline gallons per year 

$25.00 
0.168 
534 

- Fuel 

Fuel Storage Space 
Relative Relative 

to Gasoline to Gasoline 
Jn Gallons jn Gallons jn Cu Ft 

Cost (Benefit) of Change 

flew Vehicle lS/aal. GSEl /bbl. GSEl 
Value of a 

Conventional Gasoline 15.8 0.0 0.0 $0 $0.000 $0.000 
FFV Gasoline 18.5 2.7 0.4 $0 $0.003 $0.120 
FFV M85 18.5 2.7 0.4 $0 $0.003 $0.120 
FFV E85 18.5 2.7 0.4 $0 $0.003 $0.120 
CNG Bifuel Gasoline 51.8 36.0 4.0 $1 22 $0.038 $1.603 
CNG Bifuel CNG 51.8 36.0 4.0 $122 $0.038 $1.603 
LPG Bifuel Gasoline 37.0 21.2 2.0 $72 $0.022 $0.044 
LPG Bifuel LPG 37.0 21.2 2.0 $72 $0.022 $0.044 
CNG Dedicated CNG 40.0 34.1 4.6 $115 $0.036 $1 .si0 
LPG Dedicated LPG 21.2 5.4 0.7 $1 8 $0.006 $0.240 
AFV M85 18.5 2.7 0.4 $0 $0.003 $0.120 
AFV E85 18.5 2.7 0.4 $0 $0.003 $0.120 
Electric Battery EV 38.7 22.0 3.1 $77 $0.024 $1.020 

Notes: 
Each gallon represents 7.4 cubic feet of space. 



3. the average annual gasoline consumption (G), and 
4. fuel storage volumes, in gallons (Vi). 

The value of cargo space lost to fuel storage is computed as follows. First the fuel storage volume 
required for gasoline is subtracted from the alternative fuel storage volume Vi to obtain an estimate 
of gallons of cargo space l0st.2~ Gallons are converted to cubic feet by dividing by 7.4. Cubic feet 
of cargo space lost is multiplied by the assumed dollar value per cubic foot, C, to obtain the present 
value (or vehicle price-equivalent value) of lost cargo space. This is converted to a capital charge 
per barrel by multiplying by the capital charge rate, dividing by the average annual fuel 
consumption in gallons, and multiplying by the number of gallons per barrel (42). The complete 
equation for the value of lost cargo space per barrel of gasoline equivalent energy service is, 

p- = ( q - V G ) / 7 . 4 ] C . R / G )  42 (4.4) 

4.4 CALCULATION OF PERFORMANCE VALUE 

In this spreadsheet, changes in performance (expressed as percent changes in the ratio of 
horsepower to weight) are translated into dollar charges per barrel of gasoline equivalent energy 
service. Although some causes of performance changes, such as the additional weight of storage 
tanks on a bi-fuel vehicle, are inherent to the vehicle regardless of the fuel used, all performance 
changes are treated as fuel-specific. It is a characteristic of the nested MNL model that costs that 
are common to all the fuels that an AFV can use will not affect the choice of fuel for that vehicle 
type but will affect the decision to choose that vehicle type. This can be seen from the definition 

of average general cost, 4, in equation (9) above. If we assume that a component, K,, of the 

costs of fuels for vehicle type i are common to the vehicle and do not vary over fuel type (j), we 
can write the average generalized fuel cost as, 

=In general, the total volume required for a fuel storage system will be somewhat greater than the volume 
of fuel stored. 
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Thus the common cost component, IC,, carries through to the vehicle choice equation but will 
"cancel out" of the fuel choice equation. Thus, we can treat all performance costs as if they were 
fuel costs without affecting the AFVC model at all. 

The "Performance" spreadsheet obtains several data items from the "Scenario" spreadsheet 
(Figure 4.4): 

1. the value of a 1% change in H.P./weight, 
2. the annual capital recovery factor, 
3. the average annual gasoline service equivalent consumption, in gallons, 
4. the % change in vehicle weight, and 
5. the % change in horsepower by vehicle and fuel type. 

The % change in H.P./wt., Ah, is computed from the % change in horsepower, AH, and weight, 
A W, as follows, 

1 + AH, 
1 + AWi 

Ahi = - 1  

Note that the variables are actually fractional rath-r th 
displayed in the spreadsheet in % format. 

n percent changes although they are 

The values of the Ah are computed by multiplying times the value of a 1% change in H.P./wt. and 
again times 100. This gives the value in vehicle purchase price equivalent dollars. This is divided 
by average annual consumption, in gallons, and multiplied by 42 to derive the cost per barrel of 
gasoline equivalent energy service. 
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Value of 1 % change in H.P.NVt 
Annual capital recovery factor 

Gasoline gallons per year 

Figure 4.4 Calculation of Performance Values 

$25.00 
0.168 
534 

Cost (Benefit) of Change 
Change In Change Change in Value of a 

Vehicle Fuel Vehicle Weiahf in H.P, )1.PJwt Ratio pew Vehicle filaal. GSE) I$ Ibbl. GSE) 

Conventional Gasoline 0.00% 0.00% 0.00% $0 $0.000 $0.000 
FFV Gasoline 0.00% 0.00% 0.00% $0 $0.000 $0.000 
FFV M85 0.00% 3.00% 3.00% ($75) ($0.024) ($0.989) 
FFV E85 0.00% 3.00% 3.00% ($75) ($0.024) ($0.989) 
CNG Bifuel Gasoline 4.70% 0.00% 4.49% $1 12 $0.035 $1.479 
CNG Bifuel CNG 4.70% -10.00% -1 4.04% $351 $0.110 $4.627 
LPG Bifuel Gasoline 3.70% 0.00% -3.57% $89 $0.028 $1.176 

JLPG Bifuel LPG 3.70% -5.00% -8.39% $21 0 $0.066 $2.765 

LPG Dedicated LPG 2.00% 0.00% -1.96% $49 $0.015 $0.646 
AFV M85 0.00% 10.00% 10.00% ($250) ($0.078) ($3.296) 
AFV E85 0.00% 10.00% 10.00% ($250) ($0.078) ($3.2901 

CNG Dedicated CNG 6.50% 0.00% -6.10% $1 53 $0.048 $2.01 1 

Electric Battery EV 0.00% 0.00% 0.00% $0 $0.000 $0.000 
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4.5 ALTERNATIVE FUELS OPTION VALUE CALCULATION 

This spreadsheet estimates the expected value of the option an AFV owner has of buying the 
cheapest fuel as fuel prices fluctuate over time. It is this spreadsheet that requires a set of prices 
for all fuels that is reasonably close to the final solution set produced by a given AFTM scenario. 
The "Option" spreadsheet uses the prices per barrel of gasoline equivalent energy service entered 
in the "Scenario" spreadsheet. It also checks the "Shares" spreadsheet to see if the type of 
conventional gasoline assumed is reformulated, or not. Finally, the user is required to enter the 
parameters of a bivariate normal distribution of prices for two hypothetical fuels: 

1. mean fuel prices for the two fuels (values entered do not affect the calculation of option 
values), 

and 
2, standard deviations of fuel prices as a fraction the respective mean (these do matter), 

3. the correlation coefficient for fuel prices (this also matters). 

Using the bivariate normal distribution parameters the spreadsheet completes three tables: 

1. bivariate normal probability densities, 
2. the table of expected savings on fuel 1, and 
3. the table of expected savings on fuel 2. 

The expected savings in the two tables are summed, added to the difference of mean prices, and the 
total is divided by two to obtain the option value [according to equation (3.8) above]. Since this 
value is in gallons, it is multiplied by 42 to give the per barrel value. 

A "what-if' table is used to compute option values for each relevant pair of fuels. The actual per 
barrel prices form the margins of the table and are correspondingly used as the mean prices for 
computing option values. This is why the mean prices initially entered do not matter, they are 
simply placeholders for the actual fuel price pairs. Unless the prices used in the "what-if' table are 
reasonably close to the final AFTM equilibrium prices, the estimated option values will not be 
accurate. Experience shows, however, that a single iteration is sufficient to achieve pennies per 
barrel accuracy because option values do not greatly influence market equilibrium prices. Thus, 
one may run a new AFTM scenario with h4NL coefficients computed without option values or with 
option values computed with a previous scenario's prices, obtain a new set of market prices, 
substitute these into the AFVC "Scenario" spreadsheet, recompute MNL coefficients and then 
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complete the final AFTM run with the second generation coefficients. No further iteration is likely 
to be necessary to achieve price convergence of 1-2 cents per barrel. 

4.6 VEHICLE AND FUEL CHOICE MARKET SHARES CALCULATION 

This final spreadsheet in the workbook calculates the AFVC choice model parameters and produces 
preliminary estimates of market shares (Figure 4.5). Only the model coefficients are passed to the 
AFTM; the shares estimates are computed for the purpose of checking for errors and for sensitivity 
analyses of key parameters. The only new item of data entered in the "Shares" spreadsheet is a 
designation of whether reformulated or conventional gasoline is the default fuel. 

First the generalized cost coefficients (p, pi) are computed using information contained in the 
"Scenario" spreadsheet. The vehicle choice coefficient is calculated by dividing the price elasticity 
by the product of the base price and 1 minus the corresponding market share. Base price is 
expressed in dollars per barrel of gasoline equivalent energy service and comprises vehicle 
purchase cost, fuel cost, and hedonic costs. The elasticity must therefore be the market share 
elasticity of generalized cost rather than the elasticity of vehicle purchase cost. The generalized 
cost elasticity will always be greater (in absolute value) than the purchase price elasticity in 
proportion to the ratio of generalized cost to vehicle price (see equation 4.2 below). Here, 
generalized cost exceeds vehicle purchase price by about 25%. Thus if the vehicle price elasticity 
were -8, the generalized cost elasticity would be about -1 0. The generalized cost coeffkient for 
fuel shares (pi) is directly computed by dividing the specified elasticity by the gasoline service 
equivalent fuel price times 1 minus the corresponding market share. In this version of the 
spreadsheet only a single, common p is computed, although it is not necessary in theory that pi = 

p for all i multifuel vehicle types. A single p is used here due to the lack of information about how 
elasticity may vary by type of AFV. 

The remainder of the spreadsheet consists of two tables. In the larger table, fuel prices and hedonic 
values from the other spreadsheets are displayed and used to compute, (1) MNL model intercept 
terms for fuels and vehicles, and (2) preliminary market shares for fuels and vehicles. In the second 
table, fuel prices and hedonic values are displayed in terms of cents per mile. These are computed 
by dividing the hedonic costs in dollars per barrel of gasoline equivalent energy service by the 
average miles per barrel of gasoline. These data are provided solely as a more intuitive measure 
for checking the dollars per barrel estimates. 

58 



Figure 4.5 AFTM Vehicle and Fuel Choice Market Shares 
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Calculation of MNL model constants and market shares begins by converting fuel prices in dollars 
per barrel of gasoline equivalent energy to dollars per barrel of gasoline equivalent energy service 
by dividing by relative fuel efficiency (this adjusted price is needed only for computing preliminary 
market shares). Next hedonic values for refueling time, performance, cargo space, and multi-fuel 
option value are extracted from their respective spreadsheets and summed to give total hedonic 
costs. Additional vehicle purchase cost is extracted fiom the "Scenario" spreadsheet and converted 
from capital cost to a charge per barrel of gasoline equivalent energy service in the usual way. 
These two are summed to give total non-fuel price costs. The sum is converted to a MNL fuel 
choice model constant by dividing by the relevant AFV generalized cost coefficient. 

Note that since all vehicle-specific attributes as well as fuel- and vehicle-specific attributes have 
been included in the fuel- and vehicle-specific constants, there is no need for vehicle-specific 
constant terms. As we showed above in the section dealing with performance value, vehicle- 
specific constants will be simply passed through as costs from the fuel choice equation to the 
respective vehicle choice equation. 

The computation of preliminary market shares continues with the calculation of total generalized 
cost as the sum of fuel and non-fuel costs. For multi-fuel vehicles this value is converted to utility 
by multiplying by the respective generalized cost coefficient, and then it is exponentiated. 

Market shares for fuel types are then directly computed by the logit equation 

Vehicle type utilities are computed for dedicated AFVs by multiplying their total generalized cost 
times the vehicle choice generalized cost coefficient, p. For multi-fuel AFVs, utilities are 
computed by multiplying the generalized cost coefficient times the logarithm of the sum of the 
exponentiated utilities of their respective fuel types (the "logsum" term). 
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Given all the Ui for dedicated and multi-fuel AFVs, vehicle-type shares are computed by the logit 
equation. 

e vi 
s. = - ’ 

1 

(4.10) 
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5. SENSITIVITY OF AFVC MODEL TO KEY PARAMETERS 

The strategy used in developing the AFVC Model has been to construct a theoretical framework 
for integrating data and assumptions about alternative fuel vehicles and consumers' valuation of 
their attributes. One advantage of this approach is that it is amenable to sensitivity analysis. In this 
section we explore the sensitivity of the AFVC Model's predictions to assumptions about model 
parameters: 1 )  elasticities of vehicle and fuel choices to generalized cost, and 2) values attached 
to vehicle attributes and time spent refueling. This report does not explore the sensitivity of model 
predictions to vehicle characteristics. A common set of fuel prices representative of AFTM 
projections is assumed throughout, although sensitivity to fuel prices is also illustrated. In addition, 
a common set of assumptions about vehicle economics (use, MPG, cost, etc.) is also used (Table 
5.1). In nearly all comparisons below, alternative fuels are compared to gasoline rather than 
reformulated gasoline. A comparison at the reformulated gasoline price is include to illustrate the 
price sensitivity of vehicle and market shares. 

Table 5.1 Fuel Price and Vehicle Economics 

Gasoline $55.02 

Reformulated Gasoline $58.80 

$55.86 

$75.18 
~~ 

CNG $55.02 

LPG $49.56 

Electric $107.93 I 

Vehicle Economics 

Annual Miles 11,383 

Average MPG 21.30 

Discount Rate 7% 

Depreciation Rate 15% 

Years of First Ownership 4 

Capital Recovery Factor 0.168 

Base Vehicle Price $16,700 

The key findings of this sensitivity analysis are: 1) that market shares of vehicles and fuels are 
reasonably stable given even large variations in assumptions about model parameters, 2) that lower 
elasticities of choice with respect to generalized cost produce a more even distribution of vehicle 
and fuel type shares, 3) the general pattern of market shares is not greatly affected by large 
variations in hedonic values, and 4) market shares depend strongly on fuel prices. These results 
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suggest that model parameters would have to be radically different from those assumed in the base 
case to significantly alter the AFTM scenarios. 

BASE 

HIGH 

LOW 

In the AFVC Model, elasticity determines the sensitivity of market shares to generalized costs. As 
pointed out above in the theoretical discussion of the nested multinomial logit model, sensitivity 
to cost is equivalent to the relative importance of unobserved attributes in the choice decision. 
Increasing the price elasticity makes market shares more sensitive to the costs of all factors, price 
and nonprice (hedonic). Thus, vehicle and fuels with a generalized cost advantage will get even 
larger market shares and those at a disadvantage will lose market share. Conversely, using lower 
price elasticities magnifies the importance of unobserved attributes, tending to distribute demand 
more equally across vehicle and fuel types. 

Vehicle FFV Bi-Fuel Bi-Fuel Alcohol 
Choice CNG LPG FV 

-10 -20 -20 -20 -20 

-25 -50 -25 -37.5 -75 

-3 -10 -5 -7.5 -15 

The base case and alternative HIGH and LOW elasticity assumptions are shown in Table 5.2. All 
elasticity assumptions are made for a market share of 50% for ease of comparison. The base case 
assumes an elasticity of vehicle type choice of - 10, and fuel type choice elasticities twice as great, 
-20. Because the full cost of a vehicle per barrel of gasoline equivalent energy service is about five 
time the cost of the fuel, the generalized cost parameter of the vehicle choice equation will be 
roughly one fifth as large at equal elasticities and one tenth as great at the elasticity values of the 
BASE case. The HIGH and LOW elasticity cases not only assume different elasticity values, but 
vary the fuel-type choice elasticities in a plausible way. The HIGH vehicle choice elasticity is 2.5 
times the BASE case, the LOW is 30% of the BASE case value. In both the HIGH and LOW cases, 
the fuel choice elasticity for Bi-fuel CNG vehicles is half of the value for FFVs, that of Bi-Fuel 
LPG vehicles is three-fourths the FFV number, and the elasticity for Alcohol Flexible Vehicles is 
1.5 times the FFV value. 

Table 5.2 Alternative Elasticity Assumptions for Vehicle and Fuel Choices 

The effects of the three different elasticity assumptions on vehicle-type shares are illustrated in 
Figure 5.1. In the BASE case, Alcohol FV, LPG dedicated, and FFVs have nearly equal market 
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shares at just over 19%. Conventional gasoline vehicles are close behind at just over 17%, 
followed by LPG bi-fuel(lI%), CNG dedicated and bi-fuel at about 6% each, and battery electric 
vehicles at 3 one-hundredths of a percent. Increasing the generalized cost elasticities boosts the 
Alcohol FV and FFV shares to 27% each or a combined total of about 55%. Dedicated LPG and 
conventional gasoline vehicles also gain slightly to about 22% and 19%, respectively. All 
remaining vehicle types account for under 5% of the total light duty vehicle market. Note that M85 
is only slightly more expensive than gasoline, according to our price assumptions. At essentially 
equal price, M85 is an attractive fuel and vehicles that can use it are also attractive to consumers. 
FFVs cost little more than conventional vehicles and Alcohol FVs cost no more, according to our 
assumptions. With slightly improved performance and fuel economy counterbalancing slightly 
increased refueling costs, it should not be surprising that alcohol-capable vehicles gamer a large 
share of the market. The relative success of dedicated LPG vehicles may seem surprising in light 
of the relatively small market share captured by other gaseous-fueled vehicles. According to our 
assumptions, however, dedicated LPG vehicle cost only about $200 more than conventional 
gasoline vehicles, are closest to gasoline vehicles in range, and have equivalent performance and 
nearly equal fuel economy. On the plus side, LPG costs about 10% less than gasoline. It is also 
interesting to note that while most of the discussion about alternative fuel vehicles focusses on 
other fuels, LPG vehicles comprise 90% of the alternative fuel vehicles in use in the U.S. today 
(EIA, 1994, tables 3 and 4). 

Figure 5. I Vehicle Type Market Shares 
Sensitivity to Elasticity Assumptions 

30% 

5% 

0% 

I 

SASE HIGH LOW 
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Lowering price elasticities tends to distribute sales more evenly across vehicle types. FFVs, 
Alcohol FVs, dedicated LPG, and conventional gasoline vehicles all get 15% market shares. This 
is closely followed by bi-fuel LPG (13%), bi-fuel CNG (1 1%) and dedicated CNG (1 1Yo). Only 
battery electrics get a significantly smaller share (2%). The tendency toward equal shares as 
elasticity decreases is a property of the multinomial logit model. Low elasticity implies reduced 
importance of generalized cost versus unobserved attributes. Since unobserved attributes are 
assumed to be equal across vehicle types, increasing their importance leads to a more equal 
distribution of market shares. 

The alternative elasticity assumptions have a more pronounced effect on the market shares of fuels 
(Figure 5.2). Fuel shares were computed by multiplying fuel shares for multi-fuel vehicles by the 
vehicle type market share and adding up across vehicle types for each fuel type. Thus, the M85 
share includes methanol fuel purchased for FFVs and Alcohol FVs. No attempt was made to 
attribute the gasoline component of alcohol fuels to gasoline, so that the actual amount of gasoline 
burned will be understated. In the BASE case, gasoline accounts for 42% of the fuel market, 
followed by LPG (30%) and M85 (22%). The reason for gasoline's larger share of the fuel market 
is that FFVs use gasoline nearly 90% of the time, and CNG Bi-Fuel vehicles use it almost all of the 
time. Although Alcohol FVs comprise 20% of the market, E85 is essentially ignored because of 
its high price under our assumptions. Greater price sensitivity increases gasoline's market share 
to 47%. 

M85 also gains but only because Alcohol FVs gain market share. At the higher price elasticity, 
FFVs choose gasoline all of the time. At lower price elasticities fuel shares tend to be more evenly 
distributed. Gasoline is still dominant at nearly 40% of the market, followed by LPG (26%), M85 
(20%) and CNG (13%). Electricity gets the same share as its vehicle market share (2%) and even 
E85 shows up with a nonzero market share (0.01%). 

Fuel-type market shares are sensitive to fuel price, as can be seen by comparing fuel shares in 
conventional gasoline versus reformulated gasoline (RFG) regions. Under the price assumptions 
used here, RFG costs $3.78 more per barrel, or $0.09 per gallon. Under the BASE elasticity 
assumptions, this 9 centlgallon price increase costs gasoline 15 percentage points in market share 
(Figure 5.3). Gasoline's loss of market share is almost entirely divided between M85 which gains 
1 1 points and LPG, which gains just under 4 percentage points. CNG picks up less than 1 point and 
electricity and E85 remain unchanged. 
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Figure 5.2 Fuel Type Market Shares 
Sensitivity to Elasticity Assumptions 
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The effect of eliminating the option value for multi-fuel vehicles is also illustrated in Figure 5.3. 
The option value describes the expected benefit to the owner of a multi-fuel vehicle of being able 
to buy the least expensive fuel as fuel prices fluctuate. In a static equilibrium model fuel prices are 
constant, but in reality they fluctuate and the option value is an attempt to capture the effect on 
demand for multi-fuel vehicles. As figure 5.3 illustrates, however, the effect is minimal. Only the 
market share of gasoline changes by more than 1 percentage point. The effect on vehicle-type 
market shares (not shown) is also minor, the largest effect being a gain of 2% by FFVs. 

Finally, the sensitivity of market shares to assumptions about the value of vehicle attributes 
(hedonic values) was explored. HIGH and LOW cases were constructed using the attribute values 
and time values shown in Table 5.3. The HIGH case doubles the value of cargo space, triples the 
value of performance, increases the value of time spent refueling electric vehicles by a factor of 
five and doubles the value of time spent refueling other vehicle types. The LOW case cuts all the 
BASE values in half. 
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Figure 5.3 Fuel Type Market Shares 
Reformulated Gasoline and Option Value 
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Table 5.3 Alternate Values for Vehicle Attributes and Refueling Time 

BASE HIGH LOW 

Value of cubic foot of cargo space $25.00 $50.00 $12.50 

Value of 1 YO change in H.P./weight. ratio $25.00 $75.00 $12.50 

Value of 1 hour refueling $10.00 $20.00 $5.00 

Value of 1 hour refueling battery electric $1.00 $5.00 $0.50 

The principal effect of increasing the hedonic values of attributes is to shift sales toward alcohol 
vehicles, particularly the alcohol flexible vehicle which moves up to 27% from 20% (Figure 5.4). 
The chief reason is its improved performance. Conventional gasoline vehicles also gain slightly 
In general, gaseous fueled vehicles lose because their performance tends to be lower and because 
of the loss of cargo space to bulkier fuel storage tanks. Cutting hedonic values in half, on the other 
hand, has relatively small impacts across the board. Alcohol FVs, FFVs, and conventional gasoline 
vehicles each lose about 1 point, dedicated LPG vehicles remain the same and the other three types 
of gaseous-fueled vehicles gain about 1 point. Relatively speaking, the biggest winner is the EV 
whose share increases from 0.03% to 0.19%. Apparently the BASE hedonic value levels, together 
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with the assumed vehicle attributes, make characteristics relatively less important in determining 
vehicle market shares than purchase prices and fuel prices. 

This sensitivity analysis has explored the effects of alternative assumptions about AFVC model 
parameters in a relatively wide range about the BASE values. Although the predicted market 
shares for vehicles and fuels are sensitive to changing parameter values, none of the changes tested 
here altered the basic structure of market demand for alternative fuels and vehicles. That structure 
is primarily determined by fuel prices together with assumptions about initial vehicle costs and 
objective vehicle attributes. Increasing elasticities of vehicle and fuel demand did tend to shift 
demand toward the more successful fuels: alcohol, gasoline, and LPG. Reducing elasticities tends 
to distribute demand more evenly across all vehicle and fuel options. Increasing the value of 
performance favors the high-performing alcohol-fueled vehicles, and increasing the value of time 
favors all liquid fueled vehicles and LPG (which is stored on-board in liquid phase). Market shares 
are sensitive to price, which means that AFVs do substantially better against RFG than 
conventional gasoline. Although the results of this sensitivity analysis suggest a certain degree of 
robustness in the AFVC model predictions, ultimately those predictions are entirely dependent on 
the reasonableness of assumed vehicle characteristics and fuel prices. 

Figure 5.4 Vehicle Type Market Shams 
Sensitivity to Hedonic Values 

Conventiond 
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APPENDIX A 

DERIVATION OF MULTINOMIAL LOGIT MODEL 

We wish to show that if the utility of option i is defined as Ui = Vi + ei = V(Xi) + ei, where Xi is a 
vector of known attributes and ei is a random error term having the type 1 extreme value 
distribution (Johnson and Kotz, 1970) with cumulative density functi0n,2~ 

F(E,<E) = exp(-e -be) 

and probability density function, 

then the probability that Ui = Max(UI, Up, U3, ... UM), that is, that has the i" choice has the highest 
utility of all M possible choices, given the vectors Xj, u=l, M), is given by, 

e K 
Prob( Vi = Max [ V j 3 ) = - 

M 

The condition Ui = Max(U,, U2, U3, ... UM), implies, 

e j < e i + c - y  , V j * i  

and the probability of this is given by, 
W 

Substituting the appropriate cumulative and probability density functions this becomes, 

"This exposition follows that of Maddala (1992) pp. 60-61. 
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Carrying out the multiplication within the product symbol we get, 

OD 

pv. pv. 
= J exp(-e-PEi e -  + ') - pexp(-Pe, - dei 

-m j + i  

Rearranging terms gives, 

if we make the substitution, 

we get a much simplified integral, 

which can be further simplified by making the additional substitution 
the integral of a probability density function is equal to 1. 

= ei - ai , and noting that 

m e pvi 
= exp(-AJ I pexp(-Pe; - e-";) dEi = exp(-A,) = - 

epT 
M 

j =  1 

-m 

This derivation is extremely important because it shows that the coefficient of the function V(Xi) 
is precisely the scale parameter of the random error's probability density function. Note that this 
is true regardless of the units in which Vi is expressed since these are taken into account by the units 
in which p is expressed. Therefore, if we choose Vi to be a generalized cost function, enumerated 
in dollars, the coefficient of price in Vi equals p. This result is useful because it allows us to 
precisely specify the logsum term in the nested logit model, based on knowledge of the price 
coefficients of the choice subsets (nests). 
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